首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this study, the surface chemical functional groups of Bacillus cereus biomass were identified by Fourier transform infrared (FTIR) analytical technique. It had been shown that the B. cereus cells mainly contained carboxyl, hydroxyl, phosphate, amino and amide functional groups. The potentiometric titration was conducted to explain the surface acid-base properties of aqueous B. cereus biomass. The computer program FITEQL 4.0 was used to perform the model calculations. The optimization results indicated that three sitesthree pKas model, which assumed the cell surface to have three distinct types of surface organic functional groups based on the IR analysis results, simulated the experimental results very well. Moreover, batch adsorption experiments were performed to investigate biosorption behavior of Cu(Ⅱ) and Pb(Ⅱ) ions onto the biomass. Obviously, the adsorption equilibrium data for the two ions were reasonably described by typical Langmuir isotherm.  相似文献   

2.
Earthworm manure, the by-product obtained from the disposing of biowastes by earthworm breeding, is largely produced and employed as a feedstock for biochar preparation through pyrolysis. For repairing acidic soil or acidic electroplating effluent,biochar physicochemical properties would suffer from some changes like an acidic washing process, which hence affected its application functions. Pristine biochar(UBC)from pyrolysis of earthworm manure at 700°C and biochar treated by HCl(WBC) were comparatively investigated regarding their physicochemical properties, adsorption capability and adsorption mechanism of Cu~(2+) and Cd~(2+) from aqueous solution to explore the immobilization characteristics of biochar in acidic environment. After HCl treatment,the soluble ash content and phenolic-OH in the WBC sample was notably decreased against the increase of the carboxyl C_O, aromatic C_C and Si–O–Si, compared to that of UBC. All adsorption processes can be well described by Langmuir isotherm model. The calculated maximum adsorption capacity of Cu~(2+) and Cd~(2+) adsorption on UBC were 36.56 and 29.31 mg/g, respectively, which were higher than that of WBC(8.64 and 12.81 mg/g,respectively), indicating that HCl treatment significantly decreased biochar adsorption ability. Mechanism analysis revealed that alkali and alkaline earth metallic, salts(carbonates, phosphates and silicates), and surface functional groups were responsible for UBC adsorption, corresponding to ion exchange, precipitation and complexation,respectively. However, ion exchange made little contributions to WBC adsorption due to the great loss of soluble ash content. WBC adsorption was mainly attributed to the abundant exposure of silicates and surface functional groups(carboxyl C_O and aromatic C_C).  相似文献   

3.
Biochar has been introduced as an acceptable soil amendment due to its environmental benefits such as sequestering soil contaminants. However, the aging process in biochar amended soil probably decreases the adsorption capacity of biochar through changing its physico-chemical properties. Adsorption, leaching and bioavailability of fomesafen to corn in a Chinese soil amended by rice hull biochar after 0, 30, 90 and 180 days were investigated.Results showed that the addition of 0.5%–2% fresh biochar significantly increases the adsorption of fomesafen 4–26 times compare to unamended soil due to higher SSA of biochar. Biochar amendment also decreases fomesafen concentration in soil pore water by5%–23% resulting lower risk of the herbicide for cultivated plants. However, the aging process decreased the adsorption capacity of biochar since the adsorption coefficient values which was 1.9–12.4 in 0.5%–2% fresh biochar amended soil, declined to 1.36–4.16, 1.13–2.78 and 0.95–2.31 in 1, 3 and 6-month aged treatments, respectively. Consequently, higher desorption, leaching and bioavailable fraction of fomesafen belonged to 6-month aged treatment. Nevertheless, rice hull biochar was effective for sequestering fomesafen as the adsorption capacity of biochar amended soil after 6 months of aging was still 2.5–5 times higher compared to that of unamended soil.  相似文献   

4.
This study describes a new effective adsorbent for cadmium removal from aqueous solution synthesized by coating a shellac layer, a natural biodegradable and renewable resin with abundant hydroxyl and carboxylic groups, on the surface of iron oxide magnetic nanoparticles. Transmission Electron Microscopy (TEM) imaging showed shellac-coated magnetic nanoparticle (SCMN) adsorbents had a core-shell structure with a core of 20 nm and shell of 5 nm. Fourier Transform Infrared Spectroscopic analysis suggested the occurrence of reaction between carboxyl groups on the SCMN adsorbent surface and cadmium ions in aqueous solution. Kinetic data were well described by pseudo second-order model and adsorption isotherms were fitted with both Langmuir and Freundlich models with maximum adsorption capacity of 18.80 mg/g. SCMN adsorbents provided a favorable adsorption capacity under high salinity conditions, and cadmium could easily be desorbed using mild organic acid solutions at low concentration.  相似文献   

5.
The adsorption behavior of p-aminobenzoic acid and o-aminobenzoic acid onto the different polymeric adsorbents was systematically investigated as a function of the solution concentration and temperature.Experimental results indicated that the equilibrium adsorption data of the four polymeric adsorbents fitted well in the Freundlich isotherm.The adsorption capacity of multi-functional polymeric adsorbent NJ-99 was the highest,which might be attributed to the strong hydrogen-bonding interaction between the amino groups on the resin and the carboxyl group of aminobenzoic acid.The adsorption capacity of o-aminobenzoic acid onto any adsorbent was higher than p-aminobenzoic acid.Thermodynamic studies suggested the exothermic,spontaneous physical adsorption process.Adsorption kinetics results showed that the adsorption followed the pseudo-second-order kinetics model and the intraparticle mass transfer process was the rate-controlling step.  相似文献   

6.
Two novel polymers (NJ-1 and N J-2) were synthesized by chemically modified a hypercrosslinked polymer NJ-0 with dimethylamine and trimethylamine, respectively. The comparison of the adsorption properties of the three polymers toward phenol, resorcin and phloroglucin was made. The study focused on the static equilibrium adsorption behaviors and the adsorption thermodynamics. Freundlich equation was found to fit the adsorption results well. The effect of amino groups introduced onto the surface of the resin and the structure of phenolic compounds on the adsorption were also studied. The hydrogen-bonding interaction and electrostatic interaction could happen between the amino groups and the adsorbates. The adsorption impetus increased as quantity of hydroxyl groups increased, but the adsorption capacity decreased due to the drop of the matching degree of the aperture of resins and the diameter of adsorbate molecules.  相似文献   

7.
The mutual e ects of metal cations (Cu2+, Pb2+, Zn2+, and Cd2+) and p-nitrophenol (NP) on their adsorption desorption behavior onto wheat ash were studied. Results suggested that Cu2+, Pb2+, and Zn2+ diminished the adsorption and increased the desorption of NP remarkably, while Cd2+ had no such e ect. In contrast, NP diminished the adsorption of Cu2+, Pb2+, and Zn2+ onto ash, however, this suppression e ect depended on the initial concentrations of metal cations. NP had no e ect on Cd2+ adsorption on ash. Fourier transform infrared (FT-IR) and X-ray absorption spectroscopic (XAS) studies suggested the following mechanisms responsible for the metal suppression e ect on NP adsorption: (1) large hydrated Cu2+, Pb2+, and Zn2+ shells occupied the surface of ash and prevent nonspecific adsorption of NP onto ash surface; (2) Cu2+, Pb2+, and Zn2+ may block the micropores of ash, resulting in decreased adsorption of NP; (3) complexation of Cu2+, Pb2+, and Zn2+ was likely via carboxyl, hydroxylic and phenolic groups of wheat ash and these same groups may also react with NP during adsorption. As a “soft acid”, Cd2+ is less e cient in the complexation of oxygencontaining acid groups than Cu2+, Pb2+, and Zn2+. Thus, Cd2+ had no e ect on the adsorption of NP on wheat ash.  相似文献   

8.
Activated carbon was prepared from cattail by H3PO4 activation. The effects influencing the surface area of the resulting activated carbon followed the sequence of activated temperature activated time impregnation ratio impregnation time. The optimum condition was found at an impregnation ratio of 2.5, an impregnation time of 9 hr, an activated temperature of 500°C, and an activated time of 80 min. The Brunauer-Emmett-Teller surface area and average pore size of the activated carbon were 1279 m2/g and 5.585 nm, respectively. A heterogeneous structure in terms of both size and shape was highly developed and widely distributed on the carbon surface. Some groups containing oxygen and phosphorus were formed, and the carboxyl group was the major oxygen-containing functional group. An isotherm equilibrium study was carried out to investigate the adsorption capacity of the activated carbon. The data fit the Langmuir isotherm equation, with maximum monolayer adsorption capacities of 192.30 mg/g for Neutral Red and 196.08 mg/g for Malachite Green. Dye-exhausted carbon could be regenerated effectively by thermal treatment. The results indicated that cattail-derived activated carbon was a promising adsorbent for the removal of cationic dyes from aqueous solutions.  相似文献   

9.
Biochar is regarded as a promising new class of materials due to its multifunctional character and the possibility of effectively coupling different properties. With increasing introduction into the environment, environmental chemicals such as surfactants will load onto the released biochar and change its physicochemical characteristics and adsorption behavior toward pollutants. In this study, sodium dodecyl sulfate(SDS), as one type of anionic surfactant, was coated onto biochar with different loading amounts. The influence of SDS loading onto biochar's physicochemical properties were investigated by Fourier transform infrared(FT-IR) spectroscopy, elemental analysis, zeta potential and Brunauer–Emmett–Teller(BET) surface area and pore size distribution analysis. Results showed that the pore size of the biochar decreased gradually with the increase of SDS loading because of the surface-adsorption and pore-blocking processes; the p H of the point of zero charge(pHPZC) decreased with increasing SDS loading. Although surface-coating with SDS decreased the pore size of the biochar, its adsorption capacity toward Methylene Blue(MB) significantly increased. The biochar-bound SDS introduced functional groups and negative charges to the biochar surface, which could thus enhance the adsorption of MB via hydrogen bonding and electrostatic interaction. The results can shed light on the underlying mechanism of the influence of anionic surfactants on the adsorption of MB by biochar.  相似文献   

10.
Biochar has received increasing attention due to its applications as a soil amendment. Here, the chemical properties of solid and water-extractable fractions of four biochar samples were investigated. The results showed that wood biochar and bamboo biochar samples were 60%–80% more hydrophobic than those of rice husk biochar and rice husk ash. In addition, the acidity was 3.88 mmol/g from the total functional groups and 1.03 mmol/g from the carboxyl groups/lactones/phenols found in the wood biochar sample, which were about 1.5 times greater than those of the bamboo biochar sample. These functional groups could be used to determine the sorptive capacity of biochar for ionic solutes and water content and to increase the degradation of compost organics. The wood biochar sample was found to have the most humification materials(fulvic acid-like material + humic acid-like material) in the water-extractable fraction, which was 3–10 times higher than that in the rice husk biochar and rice husk ash; humified materials were not detected in the bamboo biochar sample. Humification materials in biochar may be involved in increasing the proportion of humic acid-like materials in humic-like substances within the compost product. Wood biochar had better hydrophobic, sorptive, aromatic, and humification properties compared to other biochars, suggesting that it may be used in composting in order to exert its effect as both a bulking agent and a composting amendment during the solid waste composting process.  相似文献   

11.
以甘蔗渣为原料,采用水热合成法制备羟基磷灰石/蔗渣炭复合吸附剂--HBA,通过静态吸附试验研究HBA对As(Ⅴ)的吸附特性,并采用红外光谱和X射线光电子能谱对吸附前后的HBA进行表征,探讨其吸附As(Ⅴ)的机理.结果表明:HBA的比表面积为89.52 m2/g,pHzpc(零点电荷)=7.2,HBA上的羟基磷灰石的分子式为Ca10(PO46(OH)2.HBA吸附As(Ⅴ)的效果最佳pH为5.0~9.0.Langmuir等温吸附模型适合拟合HBA对As(V)的吸附等温线,25℃时Langmuir最大吸附量为6.76 mg/g,是蔗渣炭对As(Ⅴ)最大吸附量的20多倍.红外光谱分析表明,HBA含有的=C=O、─OH、─COOH等含氧官能团,可为化学吸附提供充足的吸附位点和提高HBA的吸附能力.XPS分析表明,HBA表面的含氧官能团[如羧基(─O─C=O,532.2 eV)、羟基(─OH,530.6 eV)]参与了吸附反应,羟基磷灰石能提高HBA吸附As(Ⅴ)的能力,被吸附到HBA表面上的As主要以AsO43-和HAsO42-形态存在.   相似文献   

12.
为同时去除农田地表径流中的重金属和农药,利用猪粪制备未改性猪粪生物质炭(简称"未改性生物质炭")和硫脲改性猪粪生物质炭(简称"改性生物质炭"),分析比较硫脲改性对生物质炭的pH、元素组成、表面含氧官能团和巯基含量等理化性质的影响,并系统地研究了单一和复合污染体系中初始浓度对两种生物质炭吸附水溶液中镉(Cd)和草甘膦效率的影响.结果表明:①与未改性生物质炭相比,改性生物质炭的pH、O/C(原子比)和H/C(原子比)降低,比表面积增大,含氧官能团和巯基含量增加.②与未改性生物质炭相比,改性生物质炭对Cd和草甘膦的吸附能力增强,最大表观吸附量(Qmax)增加了近3倍;随着Cd和草甘膦初始浓度的增加,未改性和改性生物质炭对Cd和草甘膦的吸附量逐渐增加,增加量最高分别达18.52%和7.60%.③单一污染体系中两种生物质炭对Cd或草甘膦的吸附更符合Langmuir等温吸附模型,说明其对Cd或草甘膦的吸附机理是单分子层的吸附起主导作用.④复合污染体系中,未改性和改性生物质炭对Cd的吸附能力分别增加了25.28%和21.26%,未改性生物质炭对Cd的最大表观吸附量增加了29.34%,但改性生物质炭对Cd的最大表观吸附量降低了47.28%;未改性和改性生物质炭对草甘膦的吸附能力减弱,但最大表观吸附量分别增加了2.63和3.45倍.研究显示,硫脲改性猪粪生物质炭作为一项有前景的新技术,为解决实际环境中的复合污染问题提供了经济环保的技术手段.   相似文献   

13.
以椰壳为原料制备生物炭,采用365 nm紫外光辐照增加吸附剂表面含氧官能团,探究其对生物炭吸附气体和水中苯的影响.理化表征和吸附实验结果表明,生物炭表面含氧官能团增加后,对气体中苯的吸附量提高9.25倍,而对水中苯的吸附量却降低14.64%.生物炭对气体中苯的吸附过程符合Elovich动力学模型,而对水中苯的吸附过程符合准二级动力学模型.含氧官能团的引入使生物炭对气体和水中苯的等温吸附过程从符合Freundlich模型变为符合Langmuir模型.Weber-Morris模型分析认为,增加含氧官能团,可增强生物炭对气体中苯的表面吸附速率,却阻碍了苯从水中向吸附剂颗粒内扩散的过程,水分子与苯竞争吸附是导致生物炭对水中苯吸附量降低的主要原因.  相似文献   

14.
生物质炭及老化过程对土壤吸附吡虫啉的影响   总被引:6,自引:2,他引:4  
通过批处理恒温振荡法,系统考察了土壤类型(熟化红壤、新垦红壤)、生物质炭种类(竹炭、稻草炭)、生物质炭用量(0、0.1%和0.5%,质量分数)及老化过程(恒湿30 d)对土壤吸附吡虫啉的影响.Freundlich曲线描述的研究结果表明,有机质含量高的熟化红壤对吡虫啉的吸附能力强于有机质含量低的新垦红壤.生物质炭的添加能增强土壤对吡虫啉的吸附能力,且吸附能力随生物质炭施用量的增加而显著提高.添加等量生物质炭,新垦红壤吸附吡虫啉能力的增强效果强于熟化红壤;在同种土壤中添加不同种类的等量生物质炭,新垦红壤添加稻草炭后吸附能力更强,熟化红壤添加竹炭后吸附能力更强.恒湿老化后的处理对吡虫啉的吸附能力与新鲜处理相比明显降低,且添加竹炭的处理比稻草炭处理受老化过程影响更大.  相似文献   

15.
鉴于污泥基生物炭作为重金属吸附剂的研究还缺乏足够的数据,为探讨不同热解温度对生物炭结构性质及其对水体重金属吸附能力的影响,在缺氧条件下于300~900℃范围内以城市污泥为原料制备生物炭,利用元素分析、比表面积测定、电位测定和红外光谱分析等方法对生物炭的理化性质和结构特征进行表征,并选用900℃生物炭进行了吸附重金属Pb、Cr和Cd的试验研究.结果表明:① 300~900℃缺氧条件下制备的生物炭产率为44.39%~69.41%,污泥呈弱酸性(pH为6.35),热解后的生物炭呈碱性(pH为7.7~10.58).② 900℃生物炭中w(H)、w(N)大幅降低,分别比干污泥中减少89.50%和77.16%,而w(C)降低29.22%,固碳作用显著.热解后生物炭比表面积明显增大,700和900℃生物炭比表面积分别达到58.48和87.55 m2/g,最佳制备温度为700~900℃.③ 热解后的生物炭具有大量极性基团,热解温度越高,酸性基团越少,碱性基团含量增多.④ 热解作用使生物炭zeta电位升高,吸附能力增强.⑤ 900℃生物炭吸附Pb、Cr和Cd的最佳pH为7~8,对Pb、Cr和Cd的最大吸附量分别为2.38、2.48和1.16 mg/g.⑥ 各因素对生物炭吸附重金属的影响顺序,对于Pb和Cr表现为生物炭投加量>热解温度;对于Cd,表现为生物炭投加量>pH.研究显示,污泥基生物炭对Pb、Cr的吸附能力高于Cd,影响生物炭吸附行为的主导因子为生物炭投加量,影响Pb和Cr吸附的次要因子为生物炭热解温度,而影响Cd的次要因子为pH.生物炭吸附重金属的主要机理是离子交换吸附、络合反应、表面沉淀和竞争性抑制作用.   相似文献   

16.
改性多孔生物炭的制备及其对水中四环素的吸附性能研究   总被引:4,自引:0,他引:4  
杨奇亮  吴平霄 《环境科学学报》2019,39(12):3973-3984
以常见的农业废弃物玉米秸秆为原料,以NaHCO_3和三聚氰胺为活化剂,一步碳化活化制备得到了一种改性多孔生物炭,研究了其对模拟四环素(TC)废水的吸附行为,同时采用SEM、XRD、Raman、FTIR、BET和元素分析对材料进行表征分析.探究了热解温度、三聚氰胺添加量、吸附剂投加量、反应时间、初始浓度、环境温度和pH对改性多孔生物炭去除水溶液中TC的影响.相比于原始生物炭(C800),改性后的秸秆生物炭(MPC800-10)对TC拥有更优异的吸附能力,能在短时间内快速高效地去除TC.由表征结果可知,同时添加NaHCO_3和三聚氰胺得到的改性多孔生物炭(MPC800-10)相对于原始生物炭(C800)比表面积更大,孔结构更丰富,芳香性增强,且亲水性和极性也有所增大,表面官能团更丰富,含氧官能团增加.MPC800-10对TC的吸附更符合Pseudo-second-order动力学模型和Freundlich等温吸附模型,且最大吸附量达到347 mg·g~(-1).热力学分析表明MPC800-10对TC的吸附是一个自发、吸热的过程.在酸性和中性条件下MPC800-10对TC都有较好的吸附能力,且具有一定的抗离子干扰能力和良好的再生性能.本研究将为农田废弃物的资源化利用及废水中抗生素的污染治理奠定坚实的基础.  相似文献   

17.
为了在实验中缩短微塑料的老化时间,更真实地模拟自然老化条件,采用介质阻挡放电(DBD)等离子体老化聚乙烯微塑料(PE-MP)和聚丙烯微塑料(PP-MP),同时研究了老化前后PE-MP和PP-MP对Zn (II)的吸附过程和机理.随着放电时间延长和输入电压升高,微塑料表面出现微小裂纹或孔洞,形成含氧官能团.老化后PE-MP和PP-MP对Zn (II)的吸附容量分别提高了22.7%和14.8%.老化前后微塑料对Zn (II)的吸附均符合准二级动力学模型.颗粒内扩散模型表明,Zn (II)在微塑料上的吸附过程可分为快速吸附,慢速吸附和吸附平衡3个阶段.同时,老化前后微塑料对Zn (II)的吸附均符合Langmuir吸附等温线模型.热力学结果表明,微塑料对Zn (II)的吸附是自发的吸热过程.Ca2+、腐殖酸和低pH值不利于微塑料对Zn (II)的吸附.  相似文献   

18.
为研究改性生物炭对砷镉复合污染水体中镉和砷的吸附特征。本研究以牛粪、污泥、竹屑三种不同原料制备生物炭,利用镧(La)对生物炭进行改性,并采用元素分析、扫描电镜、傅里叶变换红外光谱和X射线光电子能谱等分析手段对改性前后的生物炭进行表征,结合等温吸附实验及吸附动力学实验,对比各生物炭对As (V)、Cd (II)的吸附性能并探讨其内在机理。结果表明,竹屑炭(BB)的芳香性大于牛粪炭(CB)和污泥炭(SB)。La改性使三种生物炭在热解过程中形成了酮类、酯类、羰基等含氧官能团,并在表面引入羟基。X射线光电子能谱结果显示La以氢氧化物的形式负载在生物炭表面。各生物炭对Cd (II)、As (V)的吸附符合准二级吸附动力学和Langmuir等温吸附方程。La改性生物炭对As (V)的最大拟合吸附量达到3.47~4.51 mg/g,显著高于未改性生物炭(1.82~2.50 mg/g)(p<0.05)。在As (V)、Cd (II)吸附过程中,La改性生物炭表面的La与As (V)发生络合反应,同时Cd (II)与镧基氢氧化物发生配体交换,生成Cd (OH)2沉淀。本研究证明了La改性有效提高了生物炭对As (V)、Cd (II)同时吸附的能力。  相似文献   

19.
使用腐殖酸对铁基改性生物焦进行定向修饰,并借助固定床吸附装置考察改性后生物焦汞吸附性能,探究了不同腐殖酸负载量下的铁基改性生物焦的汞吸附能力.采用BET、XPS、FTIR表征手段,考察了定向修饰后生物焦的孔隙结构、表面元素价态及表面功能基团的组成,通过SEM扫描电镜探究生物焦微观形貌,并利用EDS能谱分析生物焦表面活性金属成分分布.结果表明,使用腐殖酸对铁基改性生物焦定向修饰后的生物焦汞脱除性能大幅提高,使用5%质量分数包裹后的生物焦汞脱除性能最高,3h单位累积汞吸附量为18025ng/g,相较于未被修饰的铁基改性生物焦汞吸附性能提高65%;负载腐殖酸后的生物焦以介孔为主,表面活性金属种类丰富,有利于单质汞的氧化;样品表面羧基、醇羟基等含氧官能团数量增加,定向修饰后生物焦表面出现大量氨基等利于重金属吸附的含氮官能团;定向修饰后的生物焦表面出现团聚现象,包裹量过高会将生物焦表面活性位点完全包裹,阻碍了氧化还原反应的进行,不利于汞的进一步氧化;汞在生物焦表面的吸附过程同时存在化学吸附与物理吸附.  相似文献   

20.
海州香薷根细胞壁对铜的吸附固定机制研究   总被引:12,自引:1,他引:11  
海州香薷是铜耐性植物,细胞壁是其吸收积累铜的重要场所.本文利用细胞壁化学改性结合吸附动力学试验和红外光谱学研究了海州香薷根细胞壁及其组分对Cu2+的吸附动力学特征,以及它们吸附固定Cu2+的功能基团.吸附动力学试验表明,海州香薷根细胞壁对Cu2+吸附300 min后,吸附量已接近饱和水平,达到最大吸附量的90%左右;500 min时达到吸附饱和,饱和吸附量为5.85 mg·g-1.当细胞壁进行化学改性后,如氨水处理细胞壁使果胶变成低酯化的酰胺类果胶或者去除细胞壁中的纤维素,根细胞壁对铜的吸附量会显著降低.果胶和纤维素分别吸附了19.85%和25.48%的Cu2+,是细胞壁吸附固定Cu2+的两大主要组分.红外光谱研究也表明,在海州香薷根细胞壁吸附Cu2+的过程中,羟基、羧基和氨基是Cu2+的主要结合位点.其中,果胶为Cu2+的结合提供了羟基官能团,纤维素和半纤维素为Cu2+的结合提供了羧基官能团,而细胞壁蛋白提供了氨基官能团等结合位点.由此可见,根细胞壁及其各个组分对Cu2+具有较高的吸附固定能力,是海州香薷根系Cu耐性的重要机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号