首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Six oil spill booms produced by five manufacturers for use as fire resistant booms, were tested at the Minerals Management Service's Ohmsett Facility, NWS-Earle, Leonardo, New Jersey. The tests were conducted between July 16, 1996 and October 4, 1996. Prior to being exposed to any fire, the booms were tested for: first loss tow speed, loss rate, critical tow speed, and wave conformance. No fires were used during these tests. Four of the booms performed within speed and rate loss ranges that have been measured for commercial non-fire resistant booms. One boom was found to be superior in wave conformance and critical tow speed. However, this boom was at the lower edge of the range for first loss tow speed. A prototype boom, with a unique paddle wheel operating principal was the sixth boom included in the study. This boom was found to need further development.  相似文献   

2.
During the period of 22 August–12 October 1998, seven commercial fire booms were involved in burn testing at the US Coast Guard Fire and Safety Test Detachment Facility in Mobile, Alabama in accordance with the proposed protocol, American Society for Testing and Materials-F20. Four of the seven booms survived the test sequence and were shipped from Mobile, Alabama to the Minerals Management Service’s OHMSETT facility for additional tests including first loss, gross loss, tow speed, oil loss rate, and critical tow speed. The four booms showed the same trend in response to various wave conditions; the long sinusoidal waves improved containment performance and the short choppy waves degraded performance. One of the four booms achieved slightly higher first and gross oil loss rate tests. One boom demonstrated superior stability at high tow speeds. The results of this test report are consistent with the evaluation of fire booms that had been previously tested at OHMSETT, but also show a slight increase in performance. The tests indicate that the existing fire booms can contain oil in currents up to 1 knot and in various wave conditions after being exposed to multiple burns. This information will be used by the Coast Guard to develop policies and procedures for the in situ burning (ISB) of oil during a spill.  相似文献   

3.
A large outdoor flowing water channel has been used to obtain experimental data on boom failure mechanisms. Oil containment and failure around a simple barrier has been observed for oil viscosities from 10 to 5600 cSt at relatively low flow velocities from 0.10 to 0.20 m/s. The centre line profiles of stable contained slicks have been measured and underwater videos of escaping oil have been made when the barrier failed. These experiments have been duplicated with a computational fluid dynamics model of the channel and barrier, and satisfactory agreement between the simulated and the experimental measurements has been obtained. The study indicates that computer simulations of these complex processes can be used to obtain data about failure mechanisms that would be difficult to measure experimentally.  相似文献   

4.
Most response plans for in situ burning of oil at sea call for the use of a fire-resistant boom to contain the oil during a burn. Presently, there is no standard method for the user of fire-resistant boom to evaluate the anticipated performance of different booms. The American Standard for Testing Materials (ASTM) F-20 Committee has developed a draft standard, `Standard Guide for in situ Burning of Oil Spills on Water: Fire-Resistant Containment Boom'; however, the draft provides only general guidelines and does not specify the details of the test procedure. Utilizing the guidelines in the draft standard, a second series of experiments was conducted to evaluate a protocol for testing the ability of fire-resistant booms to withstand both fire and waves.  相似文献   

5.
Most response plans for in situ burning of oil at sea call for the use of a fire-resistant boom to contain the oil during a burn. Presently, there is no standard method for the user of a fire-resistant boom to evaluate the anticipated performance of different booms. The ASTM F-20 committee has developed a draft standard, “Standard Guide for in situ Burning of Oil Spills on Water: Fire-Resistant Containment Boom”; however, the draft provides only general guidelines and does not specify the details of the test procedure. Utilizing the guidelines in the draft standard, a series of experiments were conducted to evaluate a protocol for testing the ability of fire-resistant booms to withstand both fire and waves.  相似文献   

6.
The objective of this paper is to quantitatively analyze the arrangement of booms to improve their effectiveness in protecting natural resources. The boom arrangements tested were parallel booms placed at angles of 60°, 90°, and 120° to the shore-line. It was found that the angle between the shoreline and the parallel booms was effective in the range of 45° and 75° for all velocities. The arrangement that was found to be particularly effective was principally a set of three parallel booms placed at an angle of 60° to the shore-line with cylinders placed along the center-line.The open channel experiment was carried out for four different flow velocities, ranging from 0.2 to 0.7 knot. For each speed the position of the parallel booms and the size of the cylinders were changed. Cylinder sizes varied from 4.5 to 7.5 cm. A volume analysis was performed to determine the volume of oil contained. The variation of the length scales for the position of the parallel booms and the size of the cylinders were used to determine the optimum position for the parallel booms and the optimum cylinder diameter for each velocity. A relationship of effectiveness vs U2/gR was found which displayed a maximum. This relationship was tested experimentally with random parameters, and verified. With a particular velocity U, the graph may be used to find the optimum radius R for the cylinders to be used. The maximum in the relationship can be explained as follows: for cylinders with smaller diameters the effectiveness increases with increase in diameter because of the increased contribution of the centrifugal forces. A maximum is reached because of the physical relationship between the cylinder diameter and the channel width.  相似文献   

7.
8.
A novel method is developed to capture and analyze several experimental flow regimes through a gross pollutant trap (GPT) with fully and partially blocked screens. Typical flow conditions and screen blockages are based on findings from field investigations that show a high content of organic matter in urban areas. Fluid motion of neutral buoyant particles is tracked using a high-speed camera and particle image velocimetry (PIV) software. The recorded fluid motion is visualized through an image-based, line integral convolution (LIC) algorithm, generally suitable for large computational fluid dynamics (CFD) datasets. The LIC method, a dense representation of streamlines, is found to be superior to the point-based flow visualization (e.g., hedgehog or arrow plots) in highlighting main flow features that are important for understanding litter capture and retention in the GPT. Detailed comparisons are made between the flow regimes, and the results are compared with CFD data previously obtained for fully blocked screens. The LIC technique is a useful tool for identifying flow structures in the GPT and areas that are subjected to abnormalities difficult to detect by conventional methods. The novel method is found to be useful both in the laboratory and in the field, with little preparation and cost. The enhancements and pitfalls of the LIC technique along with the experimentally captured flow field are presented and discussed.  相似文献   

9.
    
Microscale computational fluid dynamics (CFD) modelsdeveloped in different European countries were applied towell defined test cases comprising a variety of 2 and 3dimensional configurations for which measurements from windtunnel or field studies were available. This paper presentsthe results of five CFD codes employing the widely used`standard k--model' (CHENSI, CHENSI-2, MIMO, MISKAM, TASCflow) for a street canyon in Hannover, Germany(Göttinger Strasse). Firstly the characteristics of theflow field predicted by the different codes are comparedwith high spatial resolution wind tunnel measurements;secondly the calculated concentration fields are comparedwith field and wind tunnel data. Both agreements (e.g. forthe general flow and concentration fields) anddisagreements (e.g. for the level of concentration) areobserved in the comparison. The discussion aims atexplaining the differences along with giving somesuggestions to CFD model users on how to calculate suchcomplex flows, but also to experimentalists on whereconcentration measurements should be taken in order to bemore representative for a whole street and to avoiddistinct local effects.  相似文献   

10.
Microscale Computational Fluid Dynamics (CFD) models havebecome an efficient and common simulation tool forassessment and prediction of air quality in urban areas.The proper validation of such a model is a crucialprerequisite for its practical application. Within theframework of the European research network TRAPOS a workinggroup on computational fluid dynamics modelling wasestablished and model intercomparison exercises werelaunched. Different Computational Fluid Dynamics Codes wereapplied for simulating the wind flow and pollutantconcentration patterns in several test cases. The aim ofthe present model intercomparison is (1) to assess andallocate the source of differences that appear whendifferent CFD codes using the same turbulence model areapplied to well defined test cases and (2) to improve theknowledge base for model development and application.Throughout the series of model applications coveringmanifold urban configurations, the overall agreementbetween the various models and experimental data is fair.In spite of quantitative differences between the variousnumerical results, the models are capable of reproducingthe flow patterns and dispersion characteristics observedin urban areas but they show significant differences forthe turbulent kinetic energy field that controls thedispersion of pollutants.  相似文献   

11.
This paper summarizes the development, field testing and performance evaluation of the Transrec oil recovery system including the Framo NOFO Transrec 350 skimmer and multi-functional oil spill prevention and response equipment and presents performance data, not published before, from full-scale experimental oil spills in the North Sea from 1981 to 1990. The rare data provides useful information for evaluation of mechanical clean-up capabilities and efficiency, in particular, for responders who are using this equipment in many countries around the world.The development of the Transrec oil recovery system represents one of the most comprehensive efforts funded to date by the oil industry in Norway to improve marine and open ocean oil spill response capabilities. The need for improvements was based upon early practical user experience with different oil recovery systems, and test results from experimental oil spills in the North Sea.The result of the development efforts increased: (1) skimmer efficiency from approximately 15–75% (it reached 100% under favorable environmental conditions); (2) oil emulsion recovery rate from approximately 20–300 m3/h; (3) recovery system efficiency from approximately 15–85% in 1.5 m significant wave height; (4) oil emulsion thickness from approximately 15–35 cm; (5) weather-window for mechanical recovery operations from 1.5 to 3.0 m significant wave height; (6) capability for transfer of recovered oil residue to shuttle tankers in up to 4 m significant wave height and 45 knot winds; (7) capability for operations at night.The new Transrec oil recovery system with the special J-configuration virtually eliminated skimming operation downtime, and damage to booms and equipment failures that had been caused by oil spill response vessel (OSRV) problems with maintaining skimming position in the previous three-vessel oil recovery system with the boom towed in U-configuration. The time required to outfit OSRVs dropped from approximately 30–<1 h, reducing time from notification to operation on site by more than 24 h.Improvement in oil recovery resulted in the acceptance of a new oil spill preparedness and response plan. The new plan reduced the need for oil recovery systems from 21 to 14, towing vessels in preparedness from 42 to 18, and personnel on stand-by from 135 to 70, which subsequently reduced the total contingency and operational costs by almost 50%. These cost reductions resulted from lower contingency fees for personnel, fewer towing vessels on stand-by, less expensive open ocean training and exercises, less equipment and reduced storage space to lease, and simplified equipment maintenance.  相似文献   

12.
This paper identifies and estimates time periods as ‘windows-of-opportunity’ where specific response methods, technologies, equipment, or products are more effective in clean-up operations for several oils. These windows have been estimated utilizing oil weathering and technology performance data as tools to optimize effectiveness in marine oil spill response decision-making. The windows will also provide data for action or no-action alternatives. Crude oils and oil products differ greatly in physical and chemical properties, and these properties tend to change significantly during and after a spill with oil aging (weathering). Such properties have a direct bearing on oil recovery operations, influencing the selection of response methods and technologies applicable for clean up, including their effectiveness and capacity, which can influence the time and cost of operations and the effects on natural resources.The changes and variations in physical and chemical properties over time can be modeled using data from weathering studies of specific oils. When combined with performance data for various equipment and materials, tested over a range of weathering stages of oils, windows-of-opportunity can be estimated for spill response decision-making. Under experimental conditions discussed in this paper, windows-of-opportunity have been identified and estimated for four oils (for which data are available) under a given set of representative environmental conditions. These ‘generic’ windows have been delineated for the general categories of spill response namely: (1) dispersants, (2) in situ burning, (3) booms, (4) skimmers, (5) sorbents, and (6) oil-water separators. To estimate windows-of-opportunity for the above technologies (except booms), the IKU Oil Weathering Model was utilized to predict relationships—with 5 m s−1 wind speed and seawater temperatures of 15°C.The window-of-opportunity for the dispersant (Corexit 9527®) with Alaska North Slope (ANS) oil was estimated from laboratory data to be the first 26 h. A period of ‘reduced’ dispersibility, was estimated to last from 26–120 h. The oil was considered to be no longer dispersible if treated for the first time after 120 h. The most effective time window for dispersing Bonnic Light was 0–2 h, the time period of reduced dispersibility was 2–4 h, and after 4 h the oil was estimated to be no longer dispersible. These windows-of-opportunity are based on the most effective use of a dispersant estimated from laboratory dispersant effectiveness studies using fresh and weathered oils. Laboratory dispersant effectiveness data cannot be directly utilized to predict dispersant performance during spill response, however, laboratory results are of value for estimating viscosity and pour point limitations and for guiding the selection of an appropriate product during contingency planning and response. In addition, the window of opportunity for a dispersant may be lengthened if the dispersant contains an emulsion breaking agent or multiple applications of dispersant are utilized. Therefore, a long-term emulsion breaking effect may increase the effectiveness of a dispersant and lengthen the window-of-opportunity.The window-of-opportunity of in situ burning (based upon time required for an oil to form an emulsion with 50% water content) was estimated to be approximately 0–36 h for ANS oil and 0–1 h for Bonnie Light oil after being spilled. The estimation of windows-of-opportunity for offshore booms is constrained by the fact that many booms available on the market undergo submergence at speeds of less than 2 knots. The data suggest that booms with buoyancy to weight ratios less than 8:1 may submerge at speeds within the envelope in which they could be expected to operate. This submergence is an indication of poor wave conformance, caused by reduction of freeboard and reserve net buoyancy within the range of operation. The windows-of-opportunity for two selected skimming principles (disk and brush), were estimated using modeled oil viscosity data for BCF 17 and BCF 24 in combination with experimental performance data developed as a function of viscosity. These windows were estimated to be within 3–10 h (disk skimmer) and after 10 h (brush skimmer) for BCF 17. Whereas for BCF 24, it is within 2–3 d (disk skimmer) and after 3 d (brush skimmer).For sorbents, an upper viscosity limit for an effective and practical use has in studies been found to be approximately 15,000 cP, which is the viscosity range of some Bunker C oils. Using viscosity data for the relative heavy oils, BCF 17 and BCF 24 (API gravity 17 and 24), the time windows for a sorbent (polyamine flakes) was estimated to be 0–4 and 0–10 d, respectively. With BCF 24, the effectiveness of polyamine flakes, was reduced to 50% after 36 h, although it continued to adsorb for up to 10 d. For BCF 17, the effectiveness of polyamine flakes was reduced to 50% after 12 h, although it continued to adsorb for up to 4 d. The windows-of-opportunity for several centrifuged separators based upon the time period to close the density gap between weathered oils and seawater to less than 0.025 g ml−1 (which is expected to be an end-point for effective use of centrifugal separation technology), were estimated to be 0–18 (ANS) and 0–24 h (Bonnie Light) after the spill. Utilizing the windows-of-opportunity concept, the combined information from a dynamic oil weathering model and a performance technology data base can become a decision-making tool; identifying and defining the windows of effectiveness of different response methods and equipment under given environmental conditions. Specific research and development needs are identified as related to further delineation of windows-of-opportunity.  相似文献   

13.
Based on a study carried out by the Versuchsanstalt für Wasserbau und Schiffbau, Berlin – VWS for the German Environmental Agency, this report represents an attempt to summarize the knowledge in the Federal Republic of Germany and world-wide concerning the control of hazards from discharged oil and other liquid chemicals after casualties on and in the hydrosphere. Because of technical reasons, control measures can be classified into passive and active types; this classification has been adopted for this report in the following order:
  • •Part 1: Passive mechanisms: Booms and barriers.
  • •Part 2: Active mechanisms: Recovery devices.
  • •Part 3: Other means: Dispersion.
  • •Part 4: Control of sinking and/or sunken chemicals.
Part 1 not only evaluates the behaviour of liquid chemicals on water, but also considers the physical fundamentals underlying the functioning of booms and barriers. Some widely used definitions and relations (such as the relationship between the blocking of liquid chemicals and boom draught or efficiency) will be refined. The discussion of the physical fundamentals is presented in the broadest sense and concludes with practical advice on the deployment of booms.Part 2 attempts to standardize recovery devices based on the application of fundamental physical principles. Four classes were identified and have been used to classify pick-up devices. Once again basic physical fundamentals have been presented in a way that facilitates deductions on application possibilities. The evaluation showed that practically only those methods that utilize adhesion and “hole-in-the-water” principles can be operated with sufficient efficiency which, in turn, reflects the world-wide state-of-the-art in equipment development. Special attention has been paid to hybrid systems which utilize both passive and active methodologies.In Part 3, the basics of dispersion of oil and other floating liquid chemicals are considered. It can be shown that mechanical dispersion has the same effect as its chemical counterpart. This relationship recognizes the necessity for applying a mechanical agitator for using dispersants effectively. This strategy calls into question the efficiency of chemical dispersion.Part 4 deals with the behaviour and control options for sinking and/or sunken liquid chemicals. Contrary to the general opinion that liquid chemicals which have disappeared from the surface cannot be controlled, it has been found that, under certain conditions, even these chemicals can be “herded” and recovered. It will be shown that practically the same techniques can be applied to submerged chemicals as has been used for the recovery of floating hazardous substances.  相似文献   

14.
金劲松  杨毅 《化工环保》2011,(2):140-143
提出了水域泄漏油品回收技术的装备需求,介绍了水域泄漏油品问收处理措施.采用拦油栅来控制漂浮在水上的油品,将泄漏油品集中在相对较小的区域内,并使水面的浮油层加厚,然后使用人工或机械对泄漏油品进行回收.对于水域中的少量泄漏油品,采用吸油材料来进行吸附.在油膜较薄,难以用机械方法回收的情况下,使用消油剂或固化剂进行处理.水域...  相似文献   

15.
Operation parameters such as waste feed rate, air supply, and temperature of the gas in incineration plants should be carefully determined for various situations, which include seasonal and annual changes in fuel characteristics, and performance change of the hardware. These changes may cause off-design point operation of the incinerators, which results in many problems in operation of the flue gas treatment system, low-oxygen in the combustion chamber, thermal damage of the incinerator wall, and so on. In this study, an engineering approach using computational tools along with field tests and observation is presented. For computational tools, a 0-dimensional model for heat and mass balance, computational fluid dynamics (CFD), and a global prediction model for dioxin are employed. They play a key role in diagnosing incineration systems and evaluating changes in operating conditions. The typical results of each tool are reported, and examples of improvement in operating performance are described.  相似文献   

16.
Concentration fields of different pollutants that spread outside two roadtunnels predicted with a CFD code will be presented. The solution domain represents the city area located between two tunnel outlets – tunnel Strahov and tunnel Mrazovka in Prague. The vicinity of both tunnels is a heavily built up area with tall buildings forming typical street canyons. The CFD modelling predicts the situation after the tunnel Mrazovka will be finished and traffic will increase considerably between both tunnels. Namely, an interest was given to the prediction of dispersion of emissions leaving both tunnel and the area touched by the traffic. For the CFD predictions, a method previously developed for moving vehicles was used. The method uses combination of Eulerian and Lagrangian approaches to moving objects and is capable of modeling different speeds and traffic rates of cars as well as traffic-induced turbulence. Influence of several meteorological parameters was studied, namely wind speed and direction and traffic parameters, like traffic rates and speed of cars. The method separates contributions from different sources to the total concentration field, namely from background, tunnel outlet and roadway. Results are presented in the form of horizontal and vertical concentration fields of NOx.  相似文献   

17.
旋流萃取分离技术处理石化电脱盐废水   总被引:1,自引:0,他引:1       下载免费PDF全文
陈永强  龚小芝  陈发 《化工环保》2015,35(3):297-299
采用旋流萃取分离技术处理某炼油厂常减压装置电脱盐废水(初始废水含油量约为5 000 mg/L),优化了废水除油的工艺条件。试验结果表明,废水除油的最佳工艺条件为:旋流萃取分离机中心转子的转速960 r/min、废水流量2 000 L/h、废水温度80℃。废水经旋流萃取分离后,废水的含油量小于200 mg/L,废水除油效果较好;分离后油相的含水量约为0.1%(w),盐质量浓度小于20 mg/L,可回注到常减压装置原料罐循环利用。对于2 Mt/a的常减压装置,采用旋流萃取分离技术后,每年可减少支出100.4万元。  相似文献   

18.
The 1970s oil spill model described the infiltration of oil (light nonaqueous phase liquid or LNAPL) into the subsurface, resulting in an oil pancake depressing the water table within the capillary fringe. An update to the 1970s model is needed because, according to the discussion by Lenhard et al. on the work of Lenhard and Parker and Farr et al., “A key concept of their efforts was that LNAPL-saturated ‘pancakes’ do not exist.” Lenhard and Parker and Farr et al. showed that the distribution of water, LNAPL, and air in the subsurface was a function of the LNAPL, water, and air pressures; fluid properties; and the pore-size distribution of the porous medium, and that the fluid saturations can be calculated from fluid levels in a monitoring well. The 1970s oil spill infiltration model described that spilled LNAPL migrates downward through the vadose zone under the force of gravity with some lateral spreading. The vadose zone, where all of the liquid pressures are less than atmospheric pressure, becomes a three-fluid zone consisting of variable saturations of air, water, and LNAPL, which together fully saturate the pore spaces. One important update to the 1970s model is that instead of the infiltrating LNAPL stopping at and depressing the water table, LNAPL penetrates the water table to a depth consistent with the gravitational and capillary forces experienced during LNAPL infiltration and creates a two-fluid zone below the water table where LNAPL and water pressures are greater than atmospheric pressure. After the LNAPL release stops, LNAPL infiltration and migration will cease after reaching equilibrium. The updated LNAPL infiltration conceptual model, like the 1970s model, describes the situation where the LNAPL release has stopped and LNAPL infiltration and migration have ceased after reaching equilibrium. The volume of LNAPL released is also assumed to be sufficient to pass through the vadose zone and enter the saturated zone.  相似文献   

19.
For oil spills in the open sea, operational experience has found that conventional response techniques, such as mechanical recovery, tend to remove only a small fraction of oil during major spills, a recent exception being the Mississippi River spill in Louisiana [Spill Sci. Technol. Bull. 7 (2002) 155]. By contrast, the use of dispersants can enable significant fractions of oil to be removed from the sea surface by dispersing the oil into the water column. It is thought that once dispersed the oil can biodegrade in the water column, although there is little information on the mechanism and rate of biodegradation. Two studies were undertaken on dispersion, microbial colonisation and biodegradation of Forties crude and Alaskan North Slope (ANS) oils under simulated marine conditions. The study using the Forties crude lasted 27 days and was carried out in conditions simulating estuarine and coastal conditions in waters around the UK (15 °C and in the presence of nutrients, 1 mg N-NO3/l), while the ANS study simulated low temperature conditions typical of Prince William Sound (8 °C) and took place over 35 days. The results of both studies demonstrated microbial colonisation of oil droplets after 4 days, and the formation of neutrally buoyant clusters consisting of oil, bacteria, protozoa and nematodes. By day 16, the size of the clusters increased and they sank to the bottom of the microcosms, presumably because of a decrease in buoyancy due to oil biodegradation, however biodegradation of n-alkanes was confirmed only in the Forties study. No colonisation or biodegradation of oil was noted in the controls in which biological action was inhibited. Oil degrading bacteria proliferated in all biologically active microcosms. Without dispersant, the onset of colonisation was delayed, although microbial growth rates and population size in ANS were greater than observed with the Forties. This difference reflected the greater droplet number seen with ANS at 8 °C than with Forties crude at 15 °C. Although these studies differed by more than one variable, complicating comparison, the findings suggest that dispersion (natural or chemical) changes the impact of the oil on the marine environment, potentially having important implications for management of oil spills in relation to the policy of dispersant use in an oil spill event.  相似文献   

20.
利用FLUENT6.1流体动力学计算软件,对内滤式袋式除尘器布袋内的流场、压力进行了计算模拟,得到了布袋尺寸、过滤速度、进出口压差变化时布袋内流场的变化情况,为袋式除尘器的改进和设计提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号