首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Disposal practices for bottom ash and fly ash from waste-to-energy (WTE) facilities include emplacement in ash monofills or co-disposal with municipal solid waste (MSW) and residues from water and wastewater treatment facilities. In some cases, WTE residues are used as daily cover in landfills that receive MSW. A recurring problem in many landfills is the development of calcium-based precipitates in leachate collection systems. Although MSW contains varying levels of calcium, WTE residues and treatment plant sludges have the potential to contribute concentrated sources of leachable minerals into landfill leachates. This study was conducted to evaluate the leachability of calcium and other minerals from residues generated by WTE combustion using residues obtained from three WTE facilities in Florida (two mass-burn and one refuse-derived fuel). Leaching potential was quantified as a function of contact time and liquid-to-solid ratios with batch tests and longer-term leaching tests using laboratory lysimeters to simulate an ash monofill containing fly ash and bottom ash. The leachate generated as a result of these tests had total dissolved solid (TDS) levels ranging from 5 to 320 mg TDS/g ash. Calcium was a major contributor to the TDS values, contributing from 20 to 105 g calcium/kg ash. Fly ash was a major contributor of leachable calcium. Precipitate formation in leachates from WTE combustion residues could be induced by adding mineral acids or through gas dissolution (carbon dioxide or air). Stabilization of residual calcium in fly ashes that are landfilled and/or the use of less leachable neutralization reagents during processing of acidic gases from WTE facilities could help to decrease the calcium levels in leachates and help to prevent precipitate formation in leachate collection systems.  相似文献   

2.
通过对金矿矿区炼金废渣的酸中和能力、净产酸量及浸出毒性实验,测定了废渣的产酸潜力及重金属砷、镉、铅、锌的总量和它们的浸出量。为了合理处置矿区炼金废渣,并为矿区重金属污染土壤的修复提供技术支持,采用石灰、粉煤灰、堆肥化污泥作为添加剂对废渣进行固化/稳定化处理;通过浸出毒性实验对固化/稳定化处理效果进行综合分析,试图寻求一种最佳的稳定剂。结果表明,无论是单独添加石灰、粉煤灰或者堆肥化污泥还是两两组合混合添加,样品浸出液的pH都有升高,As、Cd的浸出浓度都有明显下降,而且两两组合添加比单独添加的固化/稳定化处理效果更好。在两两组合添加中,粉煤灰混合堆肥化污泥的处理效果最好,浸出液的pH值达到7.82,As、Cd的浸出率分别下降72.0%和72.2%。说明粉煤灰混合堆肥化污泥处理炼金废渣效果最佳,同时具有以废治污的资源化生态效能。  相似文献   

3.
An exhausted sand quarry which had filled with acid water (pH 3) from the oxidation of pyrite was treated with calcium hydroxide to neutralize the water (pH 8), and sewage sludge to prevent further ingress of acid. The water remained neutral for 2 years, an appreciable quantity of base being generated by the reduction of sulphate to sulphide in the anoxic sediment formed by the sewage sludge. After this time the water reverted to acid conditions, chiefly because the lake was too shallow to retain the sewage sludge over a sufficiently large area of its bed. Incubation experiments showed that the sewage sludge had a large capacity for sulphate reduction, which was equally efficient in acid or neutral waters and that the areal rate of consumption was sufficiently fast to neutralize all incoming acid, if at least 50% of the lake bed was covered with sludge. Throughout the course of the field investigations there was no foul smell and the lake was quickly colonized by phytoplankton, macrophytes and insects. Although nutrients associated with the sewage sludge stimulated photosynthesis and so caused the generation of additional organic matter, they were exhausted within two years. To ensure permanent reclamation, phosphate fertilizer could be added once the initial supply has been consumed. Neutralization removed trace metals from the system, presumably due to formation of insoluble oxyhydroxide and carbonates. The solubility of aluminium was apparently controlled by a basic aluminium sulphate (jurbanite).  相似文献   

4.
铁屑粉煤灰组合处理含磷废水   总被引:1,自引:0,他引:1  
实验研究了铁屑粉煤灰组合处理含磷废水的除磷效果.通过单因素实验,考查了铁屑粉煤灰质量比、反应时间、pH值和投加量对除磷效果的影响.实验结果表明,该法除磷的最优条件为铁屑和粉煤灰的质量比为2∶1,反应时间为20 min,pH值为6,投加量为20 g/L.在最优实验条件下磷的去除率达到了97.5%.对比了该法和粉煤灰吸附法与传统铁屑法的除磷效果.与单一粉煤灰吸附法和传统铁屑法除磷的结果相比较,铁屑粉煤灰组合除磷的方法具有明显优势.  相似文献   

5.
在粉煤灰中添加适量的转炉铁泥经盐酸溶解后 ,制得改性粉煤灰 ,在适宜的工艺条件下 ,对六价铬和总铬都有良好的处理效果。经多项实验证明 ,此工艺方法技术可行 ,适用于小型企业间歇排放。  相似文献   

6.
Juwarkar AA  Nair A  Dubey KV  Singh SK  Devotta S 《Chemosphere》2007,68(10):1996-2002
This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.  相似文献   

7.
A comparison between sludge ash and fly ash on the improvement in soft soil   总被引:2,自引:0,他引:2  
In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4-2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20-30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil.  相似文献   

8.
A former open pit where black shale (alum shale) was excavated during 1942–1965 has been water filled since 1966. The water chemistry was dominated by calcium and sulphate and had a pH of 3.2–3.4 until 1997–1998, when pH was gradually increasing. This was due to the intrusion of leachates from alkaline cement waste deposited close to the lake. A stable pH of around 7.5 was obtained after 6–7 years. The chemistry of the pit lake has changed due to the neutralisation. Concentrations of some dissolved metals, notably zinc and nickel, have gone down, as a result of adsorption/co-precipitation on solid phases (most likely iron and aluminium hydroxides), while other metals, notably uranium and molybdenum, are present at elevated levels. Uranium concentration is reaching a minimum of around pH 6.5 and is increasing at higher pH, which may indicate a formation of neutral and anionic uranyl carbonate species at high pH (and total carbonate levels around 1 mM). Weathering of the water-exposed shale is still in progress.  相似文献   

9.
Kim YJ  Lee DH  Osako M 《Chemosphere》2002,47(6):599-605
The effect of dissolved humic matters (DHM) on the leachability of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) in fly ash was studied theoretically and in laboratorial condition to verify the previous results for pilot and field experiment of incineration residues landfill. In theoretical review, it was shown that DHM could influence the actual solubility and leachability of PCDD/F. The higher concentration of DHM showed the higher leachability of PCDD/F. In the leaching test, three different DHM concentrations and pHs of solutions were adopted to fly ash samples imaging the various characteristics of municipal solid waste leachate. It was proved experimentally that the leachability of PCDD/F increased with increasing DHM concentration in all pH conditions. The highest leachability was shown at the highest pH. Isomer distribution patterns of PCDD/F in all leachates were similar in all pH conditions. It backed up the distribution theory of PCDD/F between DHM and water.  相似文献   

10.
Suzuki K  Anegawa A  Endo K  Yamada M  Ono Y  Ono Y 《Chemosphere》2008,73(9):1428-1435
This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.  相似文献   

11.
Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)(3)) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)(3)), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs.  相似文献   

12.
The use of zeolitic material synthesized from coal fly ash for the immobilization of pollutants in contaminated soils was investigated in experimental plots in the Guadiamar Valley (SW Spain). This area was affected by a pyrite slurry spill in April 1998. Although reclamation activities were completed in a few months, residual pyrite slurry mixed with soil accounted for relatively high leachable levels of trace elements such as Zn, Pb, As, Cu, Sb, Co, Tl and Cd. Phytoremediation strategies were adopted for the final recovery of the polluted soils. The immobilization of metals had previously been undertaken to avoid leaching processes and the consequent groundwater pollution. To this end, 1100 kg of high NaP1 (Na6[(AlO2)6(SiO2)10] .15H2O) zeolitic material was synthesized using fly ash from the Teruel power plant (NE Spain), in a 10 m3 reactor. This zeolitic material was manually applied using different doses (10000-25000 kg per hectare), into the 25 cm topsoil. Another plot (control) was maintained without zeolite. Sampling was carried out 1 and 2 years after the zeolite addition. The results show that the zeolitic material considerably decreases the leaching of Cd, Co, Cu, Ni, and Zn. The sorption of metals in soil clay minerals (illite) proved to be the main cause contributing to the immobilization of these pollutants. This sorption could be a consequence of the rise in pH from 3.3 to 7.6 owing to the alkalinity of the zeolitic material added (caused by traces of free lime in the fly ash, or residual NaOH from synthesis).  相似文献   

13.
The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produced organic and inorganic chemicals, and petroleum refineries. Following a gross assessment of heavy metals in the community soils (see Part I of this two-part series), leaching tests were performed on specific soils to elucidate heavy metal-associated mineral fractions and general leachability. Leaching experiments, including the Toxicity Characteristic Leaching Procedure (TLCP) and column tests, and sequential extractions, illustrated the low leachability of metals in East St. Louis soils. The column leachate results were modeled using a formulation developed for fly ash leaching. The importance of instantaneous dissolution was evident from the model. By incorporating desorption/adsorption terms into the source term, the model was adapted very well to the time-dependent heavy metal leachate concentrations. The results demonstrate the utility of a simple model to describe heavy metal leaching from contaminated soils.  相似文献   

14.
高温堆肥与蚯蚓堆肥对城市污泥重金属形态的影响   总被引:9,自引:0,他引:9  
李明 《环境工程学报》2008,2(10):1407-1412
采用高温堆肥和蚯蚓堆肥工艺,研究了城市污泥与锯末、粉煤灰或磷矿粉按不同比例混合堆肥前后重金属(Cu、Pb、Zn、Cd和As)交换态、碳酸盐结合态、铁锰氧化物结合态、有机结合态和残留态的变化。研究表明:高温堆肥和蚯蚓堆肥前后各试验污泥的重金属形态和含量呈现出不同的变化,都可以降低污泥中交换态Cu、Pb、Zn、Cd和As的含量;对于Cu和Pb,高温堆肥优于蚯蚓堆肥;对于Zn、Cd和As,蚯蚓堆肥优于高温堆肥。2种堆肥方式中,粉煤灰用量为10%的钝化效果优于20%,磷矿粉的钝化效果同粉煤灰一样。  相似文献   

15.
The removal of phosphate in digested sludge supernatant by modified coal fly ash was investigated in this study. Modification of the fly ash by the addition of sulfuric acid could significantly enhance its immobilization ability. The experimental results also showed that adsorption of phosphate by the modified fly ash was rapid with the removal percentage of phosphate reaching an equilibrium of 98.62% in less than 5 minutes. The optimum pH for phosphate removal was 9 and the removal percentage increased with increasing adsorbent dosage. The effect of temperature on phosphate removal efficiency was not significant from 20 to 40 degrees C. X-ray diffraction and scanning electron microscope analyses showed that phosphate formed an amorphous precipitate with water-soluble calcium, aluminum, and iron ions in the modified fly ash.  相似文献   

16.
New column leaching experiments were designed and used as an alternative rapid screening approach to element mobility assessment. In these experiments, field-moist material was treated with an extracting solution to assess the effects of acidification on element mobility in mine tailings. The main advantage of this version of column leaching experiments with partitioned segments is that they give quick information on current element mobility in conditions closely simulating field conditions to compare with common unrepresentative air-dried, sieved samples used for column leaching experiments. Layers from the tailings dump material were sampled and packed into columns. The design of columns allows extracting leachates from each layer. The extracting solutions used were natural (pH 6.8) and acidified (pH 4.2) rainwater. Metals and anions were determined in the leachates. The concentrations of metals (Ca, Mg, Fe, Mn, Al, Cr, Ni, Co, Zn, and Cu) in sample leachates were determined using ICP OES. The most important anions (NO3-, Cl-, and SO4(2)-) were determined using the closed system izotacophoresis ITP analyser. The chemical analytical data from tailings leaching and physico-chemical data from field measurements (including pH, conductivity, redox potential, temperature) were used for chemometric evaluation of element mobility. Principal factor analysis (PFA) was used to evaluate ions mobility from different layers of tailings dump arising from varied pH and redox conditions. It was found that the results from the partitioned column leaching illustrate much better complex processes of metals mobility from tailings dump than the total column. The chemometric data analysis (PFA) proofed the differences in the various layers leachability that are arising from physico-chemical processes due to chemical composition of tailings dump deposit.  相似文献   

17.
A stabilization method for air pollution control (APC) residues from municipal solid waste incineration (MSWI) involving mixing of the residue with water and FeSO4 has been demonstrated on a semi-industrial scale on three types of APC residues: a semidry (SD) APC residue, a fly ash (FA), and an FA mixed with sludge (FAS) from a wet flue gas cleaning system. The process was performed in batches of 165-175 kg residue. It generates a wastewater that is highly saline but has a low content of heavy metals such as Cd, Cr, and Pb. The stabilized and raw residues have been subject to a range of leaching tests: the batch leaching test, the pH-static leaching test, the availability test, and the column test. These tests showed that the stabilized residues have remarkably improved leaching properties, especially with respect to Pb but also with respect to Cd, Cu, and Zn. The release of Pb was reduced by a factor of 250-36,000.  相似文献   

18.
A column leaching study was carried out over a period of 77 days to determine the changes in the chemistry of an acid soil and of the corresponding leachates after the addition of an anaerobic sludge (equivalent to 69 Mg DW ha−1). By the end of the experiment, the addition of the sludge to the soil had induced an increase in soil pH (from pH 3.6–4.0 to pH 4.1–4.8), in spite of the pronounced decrease in pH detected in the leachates by day 18 of the experiment. The decrease in pH (down to pH 3.3) occurred at the same time as leachate SO4 and Fe peaked. Once the acidification attributed to sulphide oxidation ceased, the “liming effect” of the sludge became evident and counteracted further proton production – such as that associated with oxidation of NH4 – at least for the duration of the study. Concentrations of Zn, Cd, Ni, and to a lesser extent, Pb in leachates displayed pulses at the beginning of the experiment (first 12 days), whereas the concentration of Cu followed a more irregular pattern; the concentrations of these metals never surpassed the European threshold values for drinking water. In contrast, concentrations of NO3, Mn, and Cr in leachates had increased by the end of the experiment – in parallel with an increase in dissolved organic C (DOC) – and surpassed the European threshold for drinking water. Mineralisation of native soil organic C (SOC) was enhanced by the addition of this N-rich residue, and the organic C mass balance at the end of the experiment was negative. Nitrogen mass balance, although positive, exhibited a loss of 77% of the N added to the system. The results obtained indicate that application of this sewage sludge to a soil with a pH < 5, at the loading rate used here, and without liming (i.e., non fulfilment of the requirements of the present European Directive) may pose a risk in terms of groundwater contamination.  相似文献   

19.
The effect of sludge processing (digested dewatered, pelletized, alkaline-stabilized, composted, and incinerated), soil type and initial soil pH on trace metal mobility was examined using undisturbed soil columns. Soils tested were Hudson silt loam (Glossaquic Hapludalf) and Arkport fine sandy loam (Lamellic Hapludalf), at initial pH levels of 5 and 7. Sludges were applied during four accelerated cropping cycles (215 tons/ha cumulative application for dewatered sludge; equivalent rates for other sludges), followed by four post-application cycles. Also examined (with no sludge applications) were Hudson soil columns from a field site that received a heavy loading of sludge in 1978. Romaine (Lactuca sativa) and oats (Avena sativa) were planted in alternate cycles, with oats later replaced by red clover (Trifolium pratense). Soil columns were watered with synthetic acid rainwater, and percolates were analyzed for trace metals (ICP spectroscopy), electrical conductivity and pH. Percolate metal concentrations varied with sludge and soil treatments. Composted sludge and ash had the lowest overall metal mobilities. Dewatered and pelletized sludge had notable leaching of Ni, Cd and Zn in Arkport soils, especially at low pH. Alkaline-stabilized sludge had the widest range of percolate metals (relatively insensitive to soils) including Cu, Ni, B and Mo. Old site column percolate concentrations showed good agreement with previous field data. Little leaching of P was observed in all cases. Cumulative percolate metal losses for all treatments were low relative to total applied metals. Leachate and soil pH were substantially depressed in dewatered and pelletized sludge soil columns and increased for alkaline-stabilized and ash treatments.  相似文献   

20.
ABSTRACT

The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produced organic and inorganic chemicals, and petroleum refineries. Following a gross assessment of heavy metals in the community soils (see Part I of this two-part series), leaching tests were performed on specific soils to elucidate heavy metal-associated mineral fractions and general leachability. Leaching experiments, including the Toxicity Characteristic Leaching Procedure (TLCP) and column tests, and sequential extractions, illustrated the low leachability of metals in East St. Louis soils. The column leachate results were modeled using a formulation developed for fly ash leaching. The importance of instantaneous dissolution was evident from the model. By incorporating desorption/adsorption terms into the source term, the model was adapted very well to the time-dependent heavy metal leachate concentrations. The results demonstrate the utility of a simple model to describe heavy metal leaching from contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号