首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High speed machining (HSM) of tool steels in their hardened state is emerging as an attractive approach for the mold and die industry due to its potential for significant cost savings and productivity improvement. An experimental study was conducted to investigate the tool wear mechanism and surface integrity in high speed ball nose end milling of hardened AISI A2 tool steel using coated tungsten carbide and polycrystalline cubic boron nitride (PCBN) tools. It is found that coated carbide tools can only be used at low speed (120 m/min) while high content PCBN tools are suitable for HSM range (470 m/min). PCBN tools produce a damage free workpiece with better surface finish and less work hardening. Despite the higher tool cost, HSM with PCBN tools lead to reduction in both total cost and production time per part.  相似文献   

2.
Polishing by laser beam radiation is a novel manufacturing process to modify the initial surface topography in order to achieve a desired level of surface finish. The performance of laser polishing (LP) is determined by an optimum combination of several key process parameters. In this regard, the overlap between two successive laser beam tracks is one of the important LP process parameters, which has a significant effect over the final surface quality. In the current study, influence of overlap between the laser beam tracks on surface quality was experimentally investigated during the laser polishing of AISI H13 tool steel. Surface areas were polished by using four different overlap percentages (e.g. 80%, 90%, 95%, and 97.5%) while applying the same energy density. The improvement of surface quality was estimated through the analysis of line profiling surface roughness Ra, areal topography surface roughness Sa, and material ratio function. Also, individual components of the surface quality, e.g. waviness and roughness, and their evolution during LP were statistically analyzed using the power spectral density and the transfer functions. Finally, as an example of the best achieved LP result, flat surface area was polished using optimum set of the process parameters improving surface quality by 86.7% through the reduction of an areal topography surface roughness Sa from 1.35 μm to 0.18 μm.  相似文献   

3.
4.
This study aimed to investigate the wear of certain coated drills when drilling carbon fiber reinforced composites (CFRP). Three different drills were used in the drilling experiments: uncoated, diamond coated and AlTiN coated carbide (WC–Co) drills. The tool wear in CFRP machining was quite different from that in conventional metal machining. The primary wear type was a dulling or blunting of the cutting edge, which has been referred to as edge rounding wear or edge recession. In this paper, a hypothesis has been developed to explain the edge rounding wear in CFRP machining. Due to the fracture-based chip formation of CFRP, there is lack of the work material stagnation zone in front of the cutting edge, which normally prevents the edge wear in metal machining. Series of wear lead to rapid dulling of the cutting edge. The resistance to edge rounding wear on the coated as well as uncoated drills has been investigated. The diamond coating significantly reduces the edge rounding wear. However, AlTiN coated drills showed no visible improvement over the uncoated carbide drill, despite of their high hardness, thus not protecting the drill. The wear mechanisms of the uncoated carbide drill and coatings are discussed. It is believed that the 2-body and 3-body abrasive wear fail to explain the observed tool wear in CFRP drilling. However, the wear of the coatings and uncoated carbide substrate from tribo-meter tests correlated well with the tool wear in the CFRP drilling. Therefore, the tribo-meter test can be used to screen the prospective tool materials before carrying drilling experiment.  相似文献   

5.
通过对17种碳钢和低合金钢在重庆地区江津试验站和海南万宁试验站进行16年的长期暴露试验,得到各种钢在重庆和万宁地区的大气腐蚀长期变化规律。指出在江津地区,碳钢和低合金钢可以用4年的短期大气腐蚀数据预测长期大气腐蚀规律。在万宁地区初期腐蚀率较低,但一定时间后腐蚀率呈上升趋势,耐候钢的腐蚀可以采用短期腐蚀数据预测长期结果,对于其他钢种则不能用短期数据预测长期腐蚀情况。对于江津地区,工程上选材可主要考虑经济因素。在万宁地区,工程上选材应重点考虑材料性能的差异。  相似文献   

6.
Steel dominates the global metal production accounting for 5 % of increase in Earth’s atmospheric carbon dioxide (CO2). Today, India is the 4th largest producer of crude steel in the world. The sector contributes around 3 % to the country’s gross domestic product (GDP) but adds 6.2 % to the national greenhouse gas (GHG) load. It accounts for 28.4% of the entire industry sector emissions, which are 23.9% of the country’s total emissions. Being a developing country, India is not obliged to cut its emissions under the Kyoto Protocol to the United Nations Framework Convention on Climate Change (FCCC), but gave voluntary commitment to reduce the emission intensity of its GDP by 20–25 % from the 2005 level by 2020. This paper attempts to find out if the Indian steel sector can help the country in fulfilling this commitment. The sector reduced its CO2 emissions per ton of steel produced by 58% from 1994 to 2007. The study generates six scenarios for future projections which show that the sector can reduce its emission intensity by 12.5 % to 63 %. But going by the conservative estimates, the sector can reduce emission intensity by 30 % to 53 %. However, actual emissions will go up significantly in every case.  相似文献   

7.
The objective of this work is to characterize the heat transfer in micro end mill tools during machining operations. This analysis will aid in the design of heat dissipation strategies that could potentially increase tool life and machining precision. Tool temperatures, above the unmachined workpiece surface, have been measured using an infrared camera during slot milling of aluminum (6061-T6) and steel (1018) with 300 μm-diameter two-flute tungsten carbide end mills. The measured temperatures compare favorably with temperature distributions predicted by a two-dimensional, transient, heat transfer model of the tool. The heat input is estimated by applying Loewen and Shaw’s heat partitioning analysis. Analysis of heat transfer in the tool found that 46 s into a cut conduction through the length of the tool, storage in the tool, and convection from the surface account for 41.5%, 45%, and 13.5% of the heat generated during machining. Thermal expansion and cooling strategies are discussed.  相似文献   

8.
9.
Increasing trends in global warming already evident, the likelihood of further rise continuing, and their impacts give urgency to addressing carbon sequestration technologies more coherently and effectively. Carbon dioxide (CO2) is responsible for over half the warming potential of all greenhouse gases (GHG), due to the dependence of world economies on fossil fuels. The processes involving CO2 capture and storage (CCS) are gaining attention as an alternative for reducing CO2 concentration in the ambient air. However, these technologies are considered as short-term solutions, as there are still concerns about the environmental sustainability of these processes. A promising technology could be the biological capture of CO2 using microalgae due to its unmatched advantages over higher plants and ocean fertilization. Microalgae are phototrophic microorganisms with simple nutritional requirements, and comprising the major primary producers on this planet. Specific pathways include autotrophic production via both open pond or closed photobioreactor (PBR) systems. Photosynthetic efficiency of microalgae ranged from 10?C20 % in comparison with 1?C2 % of most terrestrial plants. Some algal species, during their exponential growth, can double their biomass in periods as short as 3.5 hours. Moreover, advantage of being tolerant of high concentration of CO2 (flue gas), low light intensity requirements, environmentally sustainable, and co-producing added value products put these as the favoured organisms. Advantages of microalgae in comparison with other sequestration methodologies are discussed, which includes the cultivation systems, the key process parameters, wastewater treatment, harvesting and the novel bio-products produced by microalgal biomass.  相似文献   

10.
There is increasing recognition that fine sediment represents an important diffuse source pollutant in surface waters, due to its role in governing the transfer and fate of many substances, including nutrients, heavy metals, pesticides and other organic contaminants, and because of its impacts on aquatic ecology. Catchment management strategies therefore frequently need to include provision for the control of sediment mobilisation and delivery. The sediment budget concept provides a valuable framework for assisting the management and control of diffuse source sediment pollution and associated problems, by identifying the key sources and demonstrating the importance of intermediate stores and the likely impact of upstream mitigation strategies on downstream suspended sediment and sediment-associated contaminant fluxes. Accordingly, the utility of the sediment budget concept for catchment management is further discussed, by introducing examples from several contrasting river basins.  相似文献   

11.
Solid Freeform Fabrication (SFF) technologies such as Direct Metal Deposition (DMD) have made it possible to eliminate environmentally polluting supply chain activities in the tooling industry and to repair and remanufacture valuable tools and dies. In this article, we investigate three case studies to reveal the extent to which DMD-based manufacturing of molds and dies can currently achieve reduced environmental emissions and energy consumption relative to conventional manufacturing pathways. It is shown that DMD's greatest opportunity to reduce the environmental impact of tool and die manufacturing will come from its ability to enable remanufacturing. Laser-based remanufacturing of tooling is shown to reduce cost and environmental impact simultaneously, especially as the scale of the tool increases.  相似文献   

12.
In this work, the effects of tool rotation and various intensities of external magnetic field on electrical discharge machining (EDM) performance have been studied. Experimental trials divided into three regimes of low energy regime, middle energy regime and high energy regime. The influences of process parameters were investigated on main outputs of material removal rate (MRR) and surface roughness (SR). In order to correlate the input parameters and output values two mathematical models were developed to predict the MRR and SR according to variations of discharge energy, magnetic field intensity and tool rotational speed. Results indicated that the applying a rotational magnetic field around the machining gap improves the MRR and SR. Combination of rotational magnetic field and rotary electrode increases the machining performance, in comparison of previous conditions. This is due to better flushing debris from machining gap. This work introduces a new method for improving the machining performance, in cost and time points of view.  相似文献   

13.
Currently, a large number of companies consider recycling of materials as an opportunity to maximize profits and to reduce the environmental impact generated by these materials after they are disposed. However, there is also a strong constraint on the use of recycled materials mainly due to the lack of technical/scientific information, which would relate their physical properties to their recycling cycle. This information should be used in the initial phase of the product design to serve as reference for the simulation of a project to point out the physical properties obtained from recycling the Projected material (Pm). Thus, it would be possible to foresee some recycling strategy to keep the good characteristics of recycled materials by encouraging their use, regardless of the product to be designed.Therefore, the Recycling Cycle of Materials (RCM) is a tool that provides scientific/technical support in the selection of materials. It uses the information related to the physical properties of the Pm as a parameter for product design after five recycling cycles. For the case study, this tool has been applied to obtain the basic material of ABS/PC blend. Subsequently, this blend was evaluated using DSC, FTIR, traction and impact methods to obtain delimiting data for the definition of the mechanical properties resulting from the application of RCM.  相似文献   

14.
在分析流线分布的基础上,指出了大口径钢质薄壁高压容器成形工艺的不足,并提出了改进意见。  相似文献   

15.
对我国2009年粗钢产量及废钢铁加工供应情况进行概述和预测,介绍了我国废钢铁加工设备的生产规模、使用状况及研发现状,以及我国废钢铁加工设备的种类及其性能。展望了我国废钢铁加工设备的前景,指出质优价廉、适合中国国情、具有环保功能的废钢铁加工设备市场发展空间巨大。  相似文献   

16.
采用间歇振荡法,研究了钢渣吸附模式、选择性以及等温吸附方程。结果表明,钢渣对阳离子的吸附容量远远大于对阴离子的吸附容量,其吸附模式属于离子交换;其对重金属离子具有一定的吸附选择性,其选择性能与离子的电性、电价、离子半径和水化热等因素有关;钢渣吸附Pb2+是单层吸附,符合Langmuir等温吸附方程。  相似文献   

17.
碳钢在淡水环境中的腐蚀行为   总被引:5,自引:3,他引:5  
介绍了碳钢在淡水环境中的腐蚀行为及影响因素。淡水环境中碳钢主要存在电化学腐蚀和微生物腐蚀。在淡水环境中,碳钢的电化学腐蚀行为与淡水中的含氧量,淡水的流速以及淡水中的溶解成分等因素关系密切。此外,在含沙的淡水环境中,沙粒对碳钢的冲刷腐蚀也是一种重要的腐蚀行为。而在碳钢的微生物腐蚀中,目前的研究主要是围绕硫酸盐还原菌展开。  相似文献   

18.
Surface roughness prediction in milling based on tool displacements   总被引:3,自引:0,他引:3  
In this paper, an experimental device using non-contact displacement sensors for the investigation of milling tool behaviour is presented. It enables the recording of high frequency tool vibrations during milling operations. The aim of this study is related to the surface topography prediction using tool displacements and based on tool center point methodology. From the recorded signals and the machining parameters, the tool deformation is modeled. Then, from the calculated deflection, the surface topography in 3D can be predicted. In recent studies, displacements in XY plane have been measured to predict the surface topography in flank milling. In this article, the angular deflection of the tool is also considered. This leads to the prediction of surfaces obtained in flank milling as well as in end milling operations. Validation tests were carried out: the predicted profiles were compared to the measured profile. The results show that the prediction corresponds well in shape and amplitude with the measurement.  相似文献   

19.
A micro-scale machine tool (mMT) topology is developed for turning hardened steel bearing components. The topology utilizes the principle of leverage to increase accuracy and stiffness and incorporates decoupling to reduce unwanted motion of the tool. Performance specifications required that the static stiffness is at least 10 N/μm and dynamic stiffness is at least 30 N/μm in all directions. The kinematics for the topology are developed to enable control over the position and orientation of the tool tip. The effect of the topology on rake angle is determined and the topology is adjusted so as to minimize the rake angle variation during the cut. Cutting tests are performed to determine cutting parameters for achieving a low surface roughness and to estimate the accuracy of the machine. Tests show that the hard-turning mMT can achieve surface roughness below 25 nm Ra, diametrical accuracy of 1 μm and peak-to-valley roundness deviation (RONt) below 0.35 μm.  相似文献   

20.
This paper has an energy consumption reduction perspective by considering alternative machining strategies and system components interactions translated into variable and constant power flows with respect to various use phase regimes of a machine tool system. The methodology is able to estimate the mechanical energy requirements of the spindle and feed axes with respect to 2.5D machining strategies by taking into account steady-state and transient regimes. In addition, the specific amount of fixed energy drawn by a machine was determined based on a careful monitoring of the energy share amongst the auxiliary equipment that supports the accomplishment of the machining tasks. The numerical results were experimentally validated and the good agreement between them led to the conclusion that the proposed methodology can be used effectively for the calculation of the total energy required by a machine tool system for the milling of a part. This enables a straightforward comparison of different milling part programs with respect to their energy consumption levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号