首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vertical distribution of seven sternoptychid species was examined from RMT 1+8 samples collected aboard R. V. Meteor in March-April 1979 and from Royal Research Ship R.R.S. Discovery in July 1974 in the central equatorial Atlantic. During daytime sternoptychids occupied depths between 200 and 1250 m, with Sternoptyx pseudobscura living deepest, centering between 800 and 900 m, and Argyropelecus sladeni most shallow, aggregating predominantly at 300 and 400 m. They are all considered limited or partial migrants, ascending only some 100 and 200 m towards the surface at night. Only A. sladeni was observed to enter the epipelagic zone (0 and 200 m).-Feeding patterns were investigated from stomach content analyses of Sternoptyx diaphana, S. pseudobscura, Argyropelecus sladeni and A. affinis. Additional stomach contents were analysed from samples of S. diaphana, A. hemigymnus and A. olfersi collected in June 1985 from F.R.V. Walther Herwig in the temperate NE Atlantic at 46°N, 17°W by means of the Engel Trawl. The food spectrum of the six species is generally described, and additional dietary evidence regarding calanoid copepod prey is provided for four of these taxa. All sternoptychid species investigated were planktivorous, feeding predominantly on copepods and ostracods, except for the largest size class, which preyed heavily on euphausiids and amphipods. The relationship of predator size towards prey type and prey size is analysed for both Sternoptyx species. Of these, S. pseudobscura in particular exhibits taxonomic selectivity towards polychaete prey. The diet of both species of Sternoptyx included a number of epipelagic or even neustonic calanoid copepod species which contributed more than 50% of the total copepod population by numbers. So far it is not known how the predators find access to prey organisms of the upper 200 m, as netfeeding is considered unlikely. Cyclopoid copepods of the genus Sapphirina were observed as dietary component particular of S. diaphana.  相似文献   

2.
To examine the potential trophic competition between myctophids and small epipelagic fishes in the nursery grounds in spring, we compared the stomach contents of dominant myctophids (Symbolophorus californiensis, Ceratoscopelus warmingii and Myctophum asperum; = 179) and juvenile epipelagic fishes (Japanese sardine, Sardinops melanostictus, Japanese anchovy, Engraulis japonicus, chub mackerel, Scomber japonicus, and spotted mackerel, S. australasicus; = 78) that were simultaneously collected at nighttime with a midwater trawl net around the Kuroshio-Oyashio transition zone in the western North Pacific. It was clear that the neritic copepod Paracalanus parvus s.l. was the most abundant species in NORPAC samples (0.335 mm mesh size) taken at the same stations. Diets of dominant myctophid fishes differed from those of the juvenile epipelagic fishes; Japanese sardine and anchovy mostly preyed upon P. parvus s.l. (23.6% of stomach contents in volume) and Corycaeus affinis (16.1%), respectively. Both chub and spotted mackerels mainly preyed upon the seasonal vertical migrant copepod, Neocalanus cristatus (15.9 and 14.7%, respectively). On the contrary, myctophid fishes probably do not specifically select the abundant neritic copepods. Namely, S. californiensis mostly preyed upon a diel vertical migrating copepod, Pleuromamma piseki (22.7 and 30.6% in stomach of juvenile and adult, respectively), while C. warmingii and M. asperum preyed on Doliolida (43.0% in stomach of juvenile C. warmingii), appendicularians (11.0% in stomach of juvenile M. asperum), and Ostracoda (6.3% in stomach of adult C. warmingii). Feeding habits of myctophid fishes seem adapted to their prey animals; low rate of digested material (less than 30% in volume) in stomachs of S. californiensis may be linked to the movement of P. piseki, hence S. californiensis can easily consume this copepod at night since they are more concentrated at night than daytime. High rate of digested material (over 40%) of M. asperum and adult C. warmingii suggest that they feed not only at night but also during the daytime in the midwater layer. Thus, myctophid fishes actually fed in the surface layer but less actively than the small epipelagic fishes. These results suggest that the potential for direct food competition between myctophids and small epipelagic fishes is low in the nursery ground, but there remains a possibility of indirect effects through their prey items, since the above gelatinous animals feed on common prey items as juveniles of Japanese sardine and anchovy.  相似文献   

3.
Vertical distribution, diet, and morphology of adults were examined in 27 species of euphausiids occurring in the upper 1000 m in the eastern Gulf of Mexico. Vertical distribution patterns were similar to those found in the central ocean gyres and oceanic equatorial waters of the Atlantic, Indian and Pacific Oceans. Most species migrated vertically from their daytime depths of 300 to 600 m to the upper 300 m at night. Exceptions were the non-migrating species of Stylocheiron, which remained in the epipelagic zone day and night, and Nematobrachion boopis, which remained in the mesopelagic zone. Based on gut-contents analysis, the Gulf euphausiids were largely zooplanktivorous, with cyclopoid and calanoid copepods being the most common items in stomachs. ostracods were especially common in the stomachs of Thysanopoda spp. and phytoplankton in the guts of Euphausia spp. Nearly every species' diet contained a considerable amount of olive-colored debris, which may have been marine snow generated in the epipelagic zone. Cluster analysis grouped the euphausiids into nine diet guilds. Euphausiids with a generalized morphology (i.e., spherical eyes, uniform thoracic appendages) tended to group together and demonstrated little variety in stomach contents among species. Euphausiids with a specialized morphology (i.e., bilobed eyes, elongate thoracic appendages) showed considerable variety in stomach contents among species, and several species had diets that were highly specific. Many of the species that had similar gut contents fed on prey of different sizes, as indicated by the width of the calanoid copepod mandibles found in stomachs. Principal-components analysis of seven morphological characters yielded species groups that were similar, but not identical, to those generated by cluster analysis of stomach contents data. We inferred from this that morphological characters partly determine diet, but that behavior is also important. Using the 20 most abundant species and 3 niche parameters, we attempted to identify the degree of separation among euphausiids based on the level of overlap in vertical distribution and diet composition, and on differences in mean prey size. Overlap of <60% in vertical distribution or diet composition was considered to indicate distinction of that parameter. Of 190 total species pairs, only 4 pairs did not demonstrate niche separation in at least one of these categories. We found that differences in these niche parameters were greatest among species with a specialized morphology and least among species that were morphologically generalized.  相似文献   

4.
Seasonal sampling was carried out based on day/night, vertically stratified tows (100 or 125 m strata) in the upper 900 m of the water column over the mid-slope commercial fishing grounds south of Tasmania. A large midwater trawl (105 m2 mouth area) was used with an opening/closing cod-end. Subtropical convergence and subtropical species dominated the fauna, but many less abundant, more widely-distributed species were also present. Fishes, which contributed 89% of micronekton biomass and 135 of 178 species, were dominated by the Myctophidae (48% biomass and 48 species). Twenty micronekton species made up 80% of the total biomass. Overall, the micronekton fish biomass in this region was 2.2 g m−2 wet weight. A pronounced day/night shift in the distribution of biomass was attributable to diel migratory species. During the day, <0.2% of the total micronekton biomass was found in 0 to 300 m; most biomass was below 400 m, with peaks at 400 to 525 m and 775 to 900 m. At night, 53% of the biomass was found in 0 to 300 m, with progressively less in each deeper stratum. The vertical ranges of individual species typically exceeded 400 to 500 m during the day and night and were non-coincident, although nyctoepipelagic migrators were concentrated in the surface 200 m at night. Distinct epipelagic, lower and upper mesopelagic assemblages were identified, and patterns of epipelagic migration, limited migration and non-migration were categorised for species from each of the lower and upper mesopelagic assemblages. The vertical distribution of these assemblages was coincident with the primary water masses: subantarctic mode water (∼250 to 600 m) and antarctic intermediate water (below ∼700 m). The flux of migrating micronekton, estimated at 0.94 to 3.36 g C m−2 yr−1 to the lower mesopelagic and 1.14 to 4.06 g C m−2 yr−1 to the upper mesopelagic, appeared to be considerably outweighed by the consumption needs of aggregated mid-slope benthopelagic predators. We suggest that advection of mesopelagic prey in antarctic intermediate water may sustain aggregated populations of orange roughy (Hoplostethus atlanticus) and other predators on the micronekton in mid-slope depths at this site. Received: 2 April 1997 / Accepted: 21 August 1997  相似文献   

5.
In situ diel feeding behavior of neritic copepods was investigated using the gut fluorescence method, during spring and fall bloom periods in Akkeshi Bay, on the eastern coast of Hokkaido, Japan. Acartia omorii and Paracalanus sp. were the dominant species during the fall, and Pseudocalanus spp. and A. longiremis during the spring. During both bloom periods, diel rhythms were always observed for the gut pigment contents of these dominant copepods, although there were interspecific differences in the pattern. The maximum gut pigment content was always observed during the night and the minimum during the day. For all species, except Paracalanus sp., the average gut pigment content during the night was significantly higher (p<0.05) than during daytime by factors of between 1.5 and 2.7. There were no significant differences between the gut evacuation rate constants determined during the day and the night, and initial gut pigment content had no effect on the value of gut evacuation rate constants. The instantaneous ingestion rates of individual copepods calculated from gut pigment and the mean value of gut evacuation rate constants followed the same diel rhythms as gut pigment contents. Copepod daily ingestion rates were higher than the daily requirements for respiration during both bloom periods. Estimated daily ration was 40 to 91% of body carbon during the fall bloom, and 17 to 28% during the spring bloom. The higher daily rations during fall were probably due to the difference in in situ temperature (ca. 14°C).  相似文献   

6.
Size-frequency distributions were determined for 3 common lantern-fishes (Stenobrachius leucopsarus, Diaphus theta, and Tarletonbeania crenularis) off Oregon in the summer. The fishes were caught mainly in sound-scattering layers by a large pelagic trawl with 5 opening-closing nets. Changes in depth distribution and diel vertical migration with growth were evident for all 3 species. The size of S. leucopsarus increased markedly with depth both at 0 to 90 m at night and 250 to 500 m during the day. Larger D. theta were also found deeper during the day (between 250 and 450 m), but neither D. theta nor T. crenularis demonstrated size segregation in the upper 90 m at night. Large D. theta and small T. crenularis did not appear to migrate into surface waters at night. Age-Group O (15 to 20 mm) S. leucopsarus were most abundant in deep water (400 to 480 m) in the daytime and did not migrate into near-surface waters at night. Age-Group I (30 to 40 mm) S. leucopsarus were common at about 300 m by day and within the upper 30 m at night. Age-Group II–III (50 to 60 mm) apparently followed the evening ascent of Age-Group I fish and most resided at 75 to 90 m at night, beneath Age-Group I fish. Age-Group III+fish (70 to 80 mm) were associated with Age-Group O at 400 to 480 m by day and usually did not migrate above 200 m at night. The size structure of S. leucopsarus differed among the nets of a single tow at one depth, or between two tows that fished the same depths on successive nights, indicating horizontal patchiness in age structure. D. theta demonstrated low within-tow variability in size composition which indicated a spatially more uniform age structure on a scale of kilometers. The size structures of these 3 lanternfishes were different in the same area and the same season during two different years, suggesting variable survival of year classes or horizontal patchiness of age composition in the area sampled.  相似文献   

7.
The demersal fish fauna of Albatross Bay, in the eastern Gulf of Carpentaria, northern Australia, was sampled on seven cruises from August 1986 to November 1988, using a random stratified trawl survey. Four depth zones between 7 and 45 m were sampled during both day and night. The mean biomass of fish from all seven cruises was 297 kg ha–1 for days trawls and 128 kg ha–1 for night trawls. The overall mean catch rates were 922 kg h–1 for day trawls and 412 kg h–1 for night trawls. There were marked differences between cruises in both the biomass and catch rate. Approx 890 000 fish of 237 species were collected. Of these, 25 species comprised 82% of the total biomass and 74% of the overall catch rate. The dominant families were Leiognathidae, Haemulidae and Clupeidae, with Sciaenidae and Dasyatidae important at night.Leiognathus bindus was the most abundant species. Twenty-five species occurred in more than 50% of trawls, withCaranx bucculentus the most frequently caught (96% of all trawls). Thirty four species were predators on prawns; their absolute mean biomass was 50 kg ha–1 during the day and 39 kg ha–1 at night. The corresponding catch rates were 171 and 125 kg h–1. Multiple-regression analyses were used to discriminate the effects of diel, seasonal, depth and cruise patterns. Of the 31 most abundant species, 15 showed diel patterns of abundance; 11 species showed seasonal patterns of abundance; 23 species had differential depth distribution; and 13 species showed significant cruise-to-cruise variation in abundance. Cruise variations in abundance were tested against salinity, temperature, tidal exchange, plankton biomass and prawn abundances as well as periods (and lags) of total rainfall prior to sampling. Only total rainfall showed any significant correlation. Total rainfall over a period of 6 wk immediately prior to sampling showed significant positive correlations with the abundances of five species, with overall daytime catch rates, and with the suite of 34 prawn predators. Rainfall and river runoff into Albatross Bay were significantly correlated. In Albatross Bay, the complex of factors affecting fish abundances and the magnitude of between-cruise differences indicate that such tropical communities may be unpredictable and are not seasonally constant. The high catch rates in Albatross Bay relative to similar tropical areas elsewhere are discussed and attributed to the light exploitation of the Albatross Bay stocks. Other than a prawn fishery, there is no commercial trawling in Albatross Bay. Hence, the only fishing mortality is a result of by-catch from prawn trawling. The annual total of such fish by-catch is probably less than 10% of the estimated standing stock of 93 000 tonnes.  相似文献   

8.
C. Roger 《Marine Biology》1973,19(1):66-68
The role of euphausiids in the food webs of the Intertropical Pacific Ocean is defined through analysis of their nutrition, vertical distributions and migrations, and their utilization by pelagic predators. It is suggested that the abundance of the group, the extensive vertical migrations of many species and the fact that feeding takes place mainly in subsurface layers, result in a leading role of euphausiids in energy transfer between different bathymetric levels. For night-time feeding predators, they represent a noticeable food source only in the 0 to 300 m water layer, as 97% of the euphausiid biomass concentrates in this layer at night. In the daytime, only the smaller specimens (chiefly genus Stylocheiron), accounting for 10 to 15% of the whole biomass of the group, remain available for epipelagic (0 to 400 m) predators, larger individuals dwelling deeper. Euphausiids account for 8 to 10% of the food ingested by micronektonic fishes, but the species are not the same for different categories of fishes. Migrating fishes caught by pelagic trawls, more or less connected with the deep scattering layer, feed on migrating species in subsurface layers at night as well as in deeper layers during the daytime, and on non-migrating species inhabiting shallower and intermediate layers. On the other hand, fishes which comprise the prey of large long-line tunas, which are not caught by trawls because they are fast swimmers, feed almost solely on species which remain above 400 m in the daytime. These results suggest a certain degree of independance between the trophic webs which concern, on the one hand, epipelagic ichthyofauna (including tuna), and, on the other hand, migrating and deep-living faunas. Migrating populations are able to feed at night upon subsurface organisms, a part of this resource being then transmitted during the day to the deep-living fauna; but the epipelagic ichthyofauna, with a feeding activity restricted to light hours, has few possibilities to benefit from the migrating or deepliving biomass. Therefore, energy transfers seem to be intense only from subsurface (0 to 400 m) to deeper layers. From a more general point of view, these investigations suggest that, in the pelagic system, vertical distributions and migrations, and feeding rhythms, are the main factors determining the structure of the food webs.  相似文献   

9.
Diel changes in the composition of crustacean zooplankton and the diets of fish predators from an intertidal eelgrass flat were monitored concurrently. The zooplankton is characterized by two major components. The obligate zooplankters (holoplanktonic calanoid copepods and meroplanktonic decapod larvae) appear to exhibit vertical migration, being present in higher densities near the surface of the water column at night. The facultative zooplankton (amphipods and ostracods) are benthic during the day, but move up into the water column at night. Planktivorous midwaterdwelling fish consume calanoid copepods and decapod larvae during the day and cease feeding or switch their diet to amphipods at night. Benthic-dwelling fish consume some amphipods during both day and night. The factors important in prey selection by fish and the functional significance of vertical migration in both components of the zooplankton are discussed in the light of the changing patterns of fish predation.This paper is Publication No. 183 in the Ministry for Conservation of Victoria, Environmental Studies Series.  相似文献   

10.
The pelagic amphipods Themisto abyssorum and Themisto libellula represent important links between the herbivore zooplankton community and higher trophic levels of the Arctic marine food webs. Large double structured eyes of both of these hyperiid species are assumed to be used for visual prey detection. However, no information is available on the feeding strategies of these visually searching predators for the period of the polar night, a time of year with no or very low levels of daylight. Here, we report on the stomach and gut content of both Themisto species collected during a January expedition around Svalbard (78° to 81°N). Results indicate that T. abyssorum and T. libellula feed actively during the Arctic winter. The major food source of both amphipods consisted of calanoid copepods, most frequently Calanus finmarchicus.  相似文献   

11.
Feeding ecology was analysed for the first time in the larvae of the European hake (Merluccius merluccius) to determine whether their diet and selectivity were constrained by environmental conditions and how these feeding characteristics were related to ontogeny, prey availability and visual capabilities. Larvae collected during both day and night were analysed, and it was found that feeding incidence was high, regardless of the time of day. Examination of the visual system corroborated the hypothesis that hake larvae should be able to cope with a wide range of photic conditions and to forage even at low light intensity. A clear preference for adult calanoid copepods and, especially, for Clausocalanus spp. was observed in all sizes analysed. Prey number increased with larval size, but prey size did not. This finding indicates that hake larvae behave as selective and specialist predators that consume an increasing number of prey rather than larger prey during larval growth.  相似文献   

12.
Spatial and temporal feeding patterns (determined from an index of gut fullness) are described for 10 typical species of calanoid copepods collected from the North Pacific central gyre (September 1968 to June 1977), an area where the zooplankton is food limited and there were a-priori reasons to suspect that feeding and competition for food were important in regulating zooplankton community structure. Over 100 samples from 11 cruises to the eastern part of the gyre were examined, and patterns of gut fullness were related to environmental variables and the copepod species structure. The copepods studied all tended to be omnivores and food generalists. Males had lower indices of gut fullness than females but both males and females of a species had similar spatial and temporal feeding patterns. Guts were usually fuller at night than during the day, even in nonmigrating species; however, within nighttime depth distributions, no depths were preferred for feeding. There were also differences between species in mean gut fullness, but different species tended to have similar spatial and temporal feeding patterns. There was considerable spatial variability, and locales could be identified in which most species had higher indices of gut fullness. The copepods were not necessarily more abundant in these locales, nor did these tend to be areas of above average chlorophyll concentration. These patterns were consistent with relatively nonselective feeding, and there was no evidence that these species separate their niches by feeding at differing places or times.  相似文献   

13.
Acoustic telemetry was used to examine patterns of activity and space utilisation of coelacanths, nocturnal predators which spend the day in submarine caves. Nine coelacanths (Latimeria chalumnae) were tracked, each for a period of 1 to 16 nights at Grande Comore, West Indian Ocean. Activities lasted on average 9 h, usually starting shortly after sunset and ending before sunrise. Vertically, coelacanths moved up and down at and below cave level by following the bottom contour, mainly between 180 and 400 m depth. The deepest record was 698 m, the shallowest 133 m. Most time was spent between 200 and 300 m depth. Large individuals performed deep excursions to depths below 400 m, usually once per night. The fish spent most time in water temperatures of 15 to 19 °C; they rarely ventured into waters warmer than 22 °C measured at depths shallower than 160 m depth. Horizontally, coelacanths stayed in narrow areas ranging from <1 to 10 km of coastline. Coelacanths are extremely slow drift-hunters with an estimated average swimming speed of 3.2 m min−1, often travelling not more than 3 km per night. They probably take advantage of local upwelling and downwelling and slow currents occurring parallel to the steep slopes. This study shows that coelacanths are inhabitants of the subphotic zone, where they are active mainly below the depth of their daytime refuges. Received: 7 July 1999 / Accepted: 11 February 2000  相似文献   

14.
A brief survey of the ecology and biology of the Caspian Polyphemoidea   总被引:1,自引:0,他引:1  
Not less than 25 autochthonous species of Polyphemoidea live in the Caspian Sea; 5 of these species also inhabit the Azov and Black Seas and 3 the Aral Sea, but none is found beyond the Pontoaralocaspian basin. A great degree of polymorphism and morphological variability characterizes this group. Most Caspian Polyphemoidea exist in salinities of 12 to 13, and cannot tolerate great changes in salinity; however, 3 or 4 species in the Pontoasov basin can live in quite fresh water and populate the river reservoirs; these species do not tolerate ocean salinities over 8 to 10. All species inhabit mainly the upper layers of the sea (0 to 50 m; Cercopagis and Polyphemus exiguus down to 75 to 100 m), but avoid shallows under 5 to 15 m depth. Polyphemoidea perform diurnal vertical migrations, accumulating in surface layers during the hours of darkness and descending at sunrise; they also descend during rough weather conditions. Abundance of Polyphemoidea is subject to great seasonal variation. Most species appear in spring when the water temperature has reached 10° to 15°C; maximum abundance occurs in summer at water temperatures of 5° to 20°C, and Polyphemoidea disappear in autumn from the whole Caspian Sea except for deep areas of the South Caspian Sea, where the temperature does not drop under 10°C. Reproduction of the Caspian Podonidae is distinguished by a strikingly high rate of parthenogenesis, which is accompanied by neoteny, i.e. the embryos mature before birth. Bisexual reproduction, on the other hand, is suppressed; males and gamogenetic females containing winter eggs do not occur in all species of Podonidae and only in some species of Cercopagidae, in these latter mainly as single specimens. The majority of Cercopagidae have no males, being completely acyclic. Parthenogenesis shows a clear diurnal rhythm; delivery of young begins only after midnight and ends before sunrise. All Polyphemoidea are predators; they catch mobile prey and suck out its contents; this prevents successful observation of details of their feeding habit. However, it has been proved that Evadne anonyx feed mainly on copepods (Eurytemora) and small podonids, and this is probably true also of Cercopagis, as both these species are more marked predators than Podonidae from the open seas (Evadne nordmanni and other forms). Many aspects of taxonomy (intraspecific forms) and biology (reproduction of acyclic species, feeding, behaviour and functional morphology) are obscure and require further investigation.  相似文献   

15.
The distributions of bioluminescence, temperature, salinity, oxygen. pH, and chlorophyll a were measured at 10 m intervals, to a depth of 100 m at a station (33°46N; 119°36W) in the California Current from 17 to 20 July 1982. The distribution of bioluminescence showed a marked day-night change which was consistent over the sampling period. The nighttime maximum was at the surface, and the daytime maximum was between 30 and 40 m. The shapes of the day and night distributions were independent of the absolute intensity of bioluminescence and were also insensitive to advection, as inferred from changing temperature-salinity relationships. The nighttime depth distribution broadened during a period of high wind Day to night differences in the color spectrum at the depth of maximum bioluminescence suggest that the luminescent organisms differed from day to night.  相似文献   

16.
Some western Norwegian fjords host extraordinarily abundant and persistent populations of the mesopelagic, coronate scyphomedusa, Periphylla periphylla. In these environments, from late autumn to spring, the medusae undertake regular diel vertical migrations into surface waters. From unique observations obtained with a remotely operated vehicle (ROV), including observations made without artificial light, we observed that 90% of the medusae swam with their tentacles in aboral position. Stomach content analyses of surface-collected specimens revealed that the medusae ate mainly calanoid copepods, but ostracods and large euphausiids were also prominent components of their diets. The clearance rate potential of P. periphylla, assessed from in situ observations and stomach contents, was comparable to that of similar-sized, epipelagic gelatinous species. Our findings suggest that P. periphylla behave as active predators in surface waters.  相似文献   

17.
The calanoid copepods, Acartia clausi Giesbrecht and Acartia tonsa Dana, are maintained at high densities in continuous culture at 15°C. Synthetic sea-water medium is recirculated through filters and a foam tower which limits accumulation of dissolved wastes and various metabolites. The ciliate Euplotes vannus Müller is associated in culture with the copepods, and effectively controls bacterial population and accumulation of algal debris. The copepods graze upon the ciliates as well as upon the phytoflagellates Isochrysis galbana Parke and Rhodomonas baltica Korsten.Contribution No. 119 from the Institute of Marine and Atmospheric Sciences, University of Miami.  相似文献   

18.
The trophic interactions of species of fish of the continental slopes have not been investigated previously in detail. The present study examines the diets of the clupeoid, stomiatoid and salmonoid species occurring demersally and pelagically in the Rockall Trough to the west of Scotland and Ireland. Pelagic fish were collected between the surface and about 2 500-m depth between 1973 and 1978. Demersal fish were sampled at 250-m intervals of depths between 500- and 2 900-m depth during the years 1975 and 1981. Of the 28 species caught, 18 were strictly pelagic and dominated by the stomiatoids while five were strictly demersal. The remaining five species occurred in both the pelagic and demersal environment. The commonest clupeoid was Alepocephalus bairdii, which is a dominant species within the demersal fish associations at depths of 750 to 1 250m. This species, along with the deeper-living A. agassizi, and 3 other alepocephalid species feed primarily on benthopelagic prey but also exploit the epibenthos. The stomiatoid species, such as Cyclothone microdon, C. braueri, Maurolicus muelleri and Argyropelecus hemigymnus, dominate the associations of pelagic fish in the Trough. They feed on different proportions of ostracods, copepods and amphipods. Of the salmonoids, only Argentina silus and Bathylagus euryops occurred commonly and both feed on benthopelagic fauna, the latter at much greater depths than the former. The principal factor acting to prevent direct competition between species is the modal centres of bathymetric distribution of the species. Other contributing factors are briefly discussed.  相似文献   

19.
The distinctive larval stage of eels (leptocephalus) facilitates dispersal through prolonged life in the open ocean. Leptocephali are abundant and diverse off North Carolina, yet data on distributions and biology are lacking. The water column (from surface to 1,293 m) was sampled in or near the Gulf Stream off Cape Hatteras, Cape Lookout, and Cape Fear, North Carolina during summer through fall of 1999–2005, and leptocephali were collected by neuston net, plankton net, Tucker trawl, and dip net. Additional samples were collected nearly monthly from a transect across southern Onslow Bay, North Carolina (from surface to 91 m) from April 2000 to December 2001 by bongo and neuston nets, Methot frame trawl, and Tucker trawl. Overall, 584 tows were completed, and 224 of these yielded larval eels. The 1,295 eel leptocephali collected (combining all methods and areas) represented at least 63 species (nine families). Thirteen species were not known previously from the area. Dominant families for all areas were Congridae (44% of individuals, 11 species), Ophichthidae (30% of individuals, 27 species), and Muraenidae (22% of individuals, ten species). Nine taxa accounted for 70% of the overall leptocephalus catches (in order of decreasing abundance): Paraconger caudilimbatus (Poey), Gymnothorax ocellatus Agassiz complex, Ariosoma balearicum (Delaroche), Ophichthus gomesii (Castelnau), Callechelys muraena Jordan and Evermann, Letharchus aliculatus McCosker, Rhynchoconger flavus (Goode and Bean), Ophichthus cruentifer (Goode and Bean), Rhynchoconger gracilior (Ginsburg). The top three species represented 52% of the total eel larvae collected. Most leptocephali were collected at night (79%) and at depths > 45 m. Eighty percent of the eels collected in discrete depth Tucker trawls at night ranged from mean depths of 59–353 m. A substantial number (38% of discrete depth sample total) of larval eels were also collected at the surface (neuston net) at night. Daytime leptocephalus distributions were less clear partly due to low catches and lower Tucker trawl sampling effort. While net avoidance may account for some of the low daytime catches, an alternative explanation is that many species of larval eels occur during the day at depths > 350 m. Larvae of 21 taxa of typically shallow water eels were collected at depths > 350 m, but additional discrete depth diel sampling is needed to resolve leptocephalus vertical distributions. The North Carolina adult eel fauna (estuary to at least 2,000 m) consists of 51 species, 41% of which were represented in these collections. Many species of leptocephali collected are not yet known to have juveniles or adults established in the South Atlantic Bight or north of Cape Hatteras. Despite Gulf Stream transport and a prolonged larval stage, many of these eel leptocephali may not contribute to their respective populations.  相似文献   

20.
Vertical distributions of the abundant larger copepods, both adults and late copepodites, were observed day and night in the upper 500 m of the North Pacific central gyre in early November, 1971. Densities of the copepodites usually equalled or exceeded those of the adults. Copepod species with maximum densities at or above 100 m (Calanus spp., Nannocalanus minor f. major, Undinula darwini, and Euchaeta rimana) usually had no ontogenetic or diel migration. Neocalanus spp. and Haloptilus longicornis exhibited ontogenetic but not diel migrations. Nannocalanus minor f. minor, Aetideus acutus, Euchaeta media, Scolecithrix spp. and Pleuromamma spp., had both ontogenetic and diel migrations. Adults and copepodites of E. media and Pleuromamma spp. usually had their night modes at the same depth, but the daytime modes were at progressively deeper depths for progressively older stages. Daytime modes for adults and copepodites of A. acutus and Scolecithrix bradyi were at the same depth, but the nighttime modes were at shallower depths for progressively older stages. Night modes of all these migrators were usually in the mixed layer (75 m), where primary production rates were maximal. Congeners usually had similar migratory behavior, but competition probably has been a significant determinant of vertical distribution, since congeners, particularly sibling species, consistently had different depths of maximum occurrence during both day and night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号