首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus (P) leaching losses from manure applications may be of concern when artificial drainage systems allow for hydrologic short-cuts to surface waters. This study quantified P leaching losses from liquid manure applications on two soil textural extremes, a clay loam and loamy sand soil, as affected by cropping system and timing of application. For each soil type, manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring. Drain water was sampled at least weekly when lines were flowing, and outflow rate and total P content were determined. High P leaching losses were measured in the clay loam as soon as drain lines initiated flow after manure application. Flow-weighted mean P leaching losses on clay loam plots averaged 39 times higher (0.504 mg L(-1)) than those on loamy sand plots (0.013 mg L(-1)), and were above the USEPA level of concern of 0.1 mg L(-1). Phosphorus losses varied among application seasons on the clay loam soil, with highest losses generally measured for early fall applications. Phosphorus leaching patterns in clay loam showed short-term spikes and high losses were associated with high drain outflow rates, suggesting preferential flow as the main transport mechanism. Phosphorus leaching from manure applications on loamy sand soils does not pose environmental concerns as long as soil P levels remain below the saturation level.  相似文献   

2.
Phosphorus leaching in relation to soil type and soil phosphorus content   总被引:6,自引:0,他引:6  
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels. In this study, we measured leaching of total phosphorus (TP) and dissolved reactive phosphorus (DRP) during three years in undisturbed soil columns of five soils. The soils were collected at sites, established between 1957 and 1966, included in a long-term Swedish fertility experiment with four P fertilization levels at each site. Total P losses varied between 0.03 and 1.09 kg ha(-1) yr(-1), but no general correlation could be found between P concentrations and soil test P (Olsen P and phosphorus content in ammonium lactate extract [P-AL]) or P sorption indices (single-point phosphorus sorption index [PSI] and P sorption saturation) of the topsoil. Instead, water transport mechanism through the soil and subsoil properties seemed to be more important for P leaching than soil test P value in the topsoil. In one soil, where preferential flow was the dominant water transport pathway, water and P bypassed the high sorption capacity of the subsoil, resulting in high losses. On the other hand, P leaching from some soils was low in spite of high P applications due to high P sorption capacity in the subsoil. Therefore, site-specific factors may serve as indicators for P leaching losses, but a single, general indicator for all soil types was not found in this study.  相似文献   

3.
In flat areas, transport of dissolved nutrients by water through the soil matrix to groundwater and drains is assumed to be the dominant pathway for nutrient losses to ground- and surface waters. However, long-term data on the losses of nutrients to surface water and the contribution of various pathways is limited. We studied nutrient losses and pathways on a heavy clay soil in a fluvial plain in The Netherlands during a 5-yr period. Average annual nitrogen (N) and phosphorus (P) losses to surface water were 15.1 and 3.0 kg ha(-1) yr(-1), respectively. Losses were dominated by particulate N (50%) and P (70%) forms. Rapid discharge through trenches was the dominant pathway (60-90%) for water and nutrient transport. The contribution of pipe drains to the total discharge of water and nutrients was strongly related to the length of the dry period in the preceding summer. This relationship can be explained by the very low conductivity of the soil matrix and the formation of shrinkage cracks during summer. Losses of dissolved reactive P through pipe drains appear to be dominated by preferential flow based on the low dissolved reactive P concentration in the soil matrix at this depth. Rainfall occurring after manure application played an important role with respect to the annual losses of N and P in spring when heavy rainfall occurred within 2 wk after manure application.  相似文献   

4.
Peat fire effects on some properties of an artificially drained peatland   总被引:3,自引:0,他引:3  
The management of artificially drained organic soils is a very important issue, since the accelerated mineralization and sometimes peat fires alter physical and chemical properties of soils and the availability of plant nutrients. This study was performed to determine relatively short- and long-term effects of peat fires on some physical and chemical properties of soils in the artificially drained Gavur Lake Peatland of Turkey. To achieve this objective, measured properties of soils burned in 2001, burned in 1965, and unburned were compared. The results indicated that soil bulk density, pH, amounts of soluble salts, CaCO3, and concentrations of ammonium acetate-extractable (AAE) Ca, Mg, K, and Na were significantly higher for both sampling depths in the burned areas. The areas burned in 2001 had higher pH, soluble salts, and the concentrations of AAE Ca, Mg, and K compared with sites burned in 1965, and this was reasoned with leaching losses and plant uptake of these basic cations for four decades in the latter. Percent saturation and organic carbon contents of soils, however, were significantly lower in the burned areas for both sampling depths. Olsen P levels were not significantly different between the sites. This work clearly shows that alterations in soils properties with peat fires do not recover in the long term.  相似文献   

5.
Within the framework of an interregional project in the Emilia Romagna region of northern Italy, the coupled MACRO-SOILN model was chosen to estimate soil protective capacity against pollutants. The aim of our study was to evaluate the model to better identify key parameters and processes that influence N losses in agricultural soils. Nitrate N content was monitored in soil under corn (Zea mays L.) fertilized with urea and/or pig slurry, in two field experiments performed on four different soils: a Fienili clay, a Barco-like silt, a Sant'Omobono silt loam, and a La Boaria silty clay soil. Measurements were compared with model predictions. For all soils, nitrate content was underestimated on average by 24 to 88% at lower N rates; it was overestimated by 1 to 104% at higher N rates. The root mean square error (RMSE) was equal to 81.1%. Simulation of crop N uptake and soil water flow, estimation of the ammonia losses at pig slurry spreading, and N transformation parameter setting were considered as possible error sources. The calibration of crop N uptake gave rise to good model efficiency index values. The RMSE for the simulation of soil water content varied between 9.8 and 20.2%. A more accurate setting of the ammonia losses and of the feces transformation parameter values could allow the RMSE for the simulation of soil nitrate content to be reduced by no more than 10 to 15%. It is possible for the model not to include the simulation of processes that could have relevant effects on the soil N dynamics.  相似文献   

6.
7.
Phosphorus exchangeability and leaching losses from two grassland soils   总被引:1,自引:0,他引:1  
Although phosphate phosphorus (P) is strongly sorbed in many soils, it may be quickly transported through the soil by preferential flow. Under flood irrigation, preferential flow is especially pronounced and associated solute losses may be important. Phosphorus losses induced by flood irrigation were investigated in a lysimeter study. Detailed soil chemical analyses revealed that P was very mobile in the topsoil, but the higher P-fixing capacity of the subsoil appeared to restrict P mobility. Application of a dye tracer enabled preferential flow pathways to be identified. Soil sampling according to dye staining patterns revealed that exchangeable P was significantly greater in preferential flow areas as compared with the unstained soil matrix. This could be partly attributed to the accumulation of organic carbon and P, together with enhanced leaching of Al- and Fe-oxides in the preferential flow areas, which resulted in reduced P sorption. The irrigation water caused a rapid hydrologic response by displacement of resident water from the subsoil. Despite the occurrence of preferential flow, most of the outflowing water was resident soil water and very low in P. In these soils the occurrence of preferential flow per se is not sufficient to cause large P losses even if the topsoil is rich in P. It appears that the P was retained in lower parts of the soil profile characterized by a very high P-fixing capacity. This study demonstrates the risks associated with assessing potential P losses on the basis of P mobility in the topsoil alone.  相似文献   

8.
Data from seven Management Systems Evaluation Areas (MSEA) were used to test the sensitivity of a leaching model, Pesticide Root Zone Model-2, to a variety of hydrologic settings in the Midwest. Atrazine leaching was simulated because it was prevalent in the MSEA studies and is frequently detected in the region's groundwater. Short-term simulations used site specific soil and chemical parameters. Generalized simulations used data avail. able from regional soil databases and standardized variables. Accurate short-term simulations were precluded by lack of antecedent atrazine concentrations in the soil profile and water, suggesting that simulations using data for less than five years underestimate atrazine leaching. The seven sites were ranked in order of atrazine detection frequency (concentration > 0.2 μg L-1) in soil water at 2 m depth in simulations. The rank order of the sites based on long-term simulations were similar to the ranks of sites based on atrazine detection frequency from groundwater monitoring. Simulations with Map Unit Use File (MUUF) soils data were more highly correlated with ranks of observed atrazine detection frequencies than were short-term simulations using site-specific soil data. Simulations using the MIJUIF data for soil parameters were sufficiently similarity to observed atrazine detection to allow the credible use of regional soils data for simulating leaching with PRZM-2 in a variety of Midwest soil and hydrologic conditions. This is encouraging for regional modeling efforts because soil parameters are among the most critical for operating PRZM-2 and many other leaching models.  相似文献   

9.
Sensitivity analyses for the preferential flow model MACRO were carried out using one-at-a-time and Monte Carlo sampling approaches. Four different scenarios were generated by simulating leaching to depth of two hypothetical pesticides in a sandy loam and a more structured clay loam soil. Sensitivity of the model was assessed using the predictions for accumulated water percolated at a 1-m depth and accumulated pesticide losses in percolation. Results for simulated percolation were similar for the two soils. Predictions of water volumes percolated were found to be only marginally affected by changes in input parameters and the most influential parameter was the water content defining the boundary between micropores and macropores in this dual-porosity model. In contrast, predictions of pesticide losses were found to be dependent on the scenarios considered and to be significantly affected by variations in input parameters. In most scenarios, predictions for pesticide losses by MACRO were most influenced by parameters related to sorption and degradation. Under specific circumstances, pesticide losses can be largely affected by changes in hydrological properties of the soil. Since parameters were varied within ranges that approximated their uncertainty, a first-step assessment of uncertainty for the predictions of pesticide losses was possible. Large uncertainties in the predictions were reported, although these are likely to have been overestimated by considering a large number of input parameters in the exercise. It appears desirable that a probabilistic framework accounting for uncertainty is integrated into the estimation of pesticide exposure for regulatory purposes.  相似文献   

10.
The tsunami of 26 December 2004 struck the Nagapattinam District, Tamil Nadu, India. Sea water inundation from the tsunami caused salinization problems for soil and groundwater in coastal areas of the district, and also induced salt injuries in crops. To document the recovery of the agricultural environment from the tsunami, we conducted observations of the soil, groundwater, and vegetation. Soil electrical conductivity increased sharply after the tsunami, but returned to pre-tsunami levels the following year. Groundwater salinity returned to pre-tsunami levels by 2006. These rapid rates of recovery were due to the monsoon rainfall leaching salt from the highly permeable soils in the area. MODIS NDVI values measured before and after the tsunami showed that vegetation damaged by the tsunami recovered to its pre-tsunami state by the next rice cropping season, called samba, which starts from August to February. From these results, we conclude that the agricultural environment of the district has now fully recovered from the tsunami. Based on the results, we have also identified important management implications for soil, groundwater, and vegetation as follows: 1) due to the heavy monsoon rainfall and the high permeability of soils in this region, anthropogenic inputs like fertilizers should be applied carefully to minimize pollution, and the use of green manure is recommended; 2) areas that were contaminated by sea water extended up to 1000 m from the sea shore and over pumping of groundwater should be carefully avoided to prevent inducing sea water intrusion; and 3) data from a moderate resolution sensor of 250 m, such as MODIS, can be applied to impact assessment in widespread paddy field areas like the Nagapattinam District.  相似文献   

11.
Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.  相似文献   

12.
Phosphorus retention in lowland soils depends on redox conditions. The aim of this study was to evaluate how the Fe(III) reduction degree affects phosphate adsorption and precipitation. Two similarly P-saturated, ferric Fe-rich lowland soils, a sandy and a peat soil, were incubated under anaerobic conditions. M?ssbauer spectroscopy demonstrated that Fe(III) in the sandy soil was present as goethite and phyllosilicates, whereas Fe(III) in the peat soil was mainly present as polynuclear, Fe-humic complexes. Following anoxic incubation, extensive formation of Fe(II) in the solids occurred. After 100 d, the Fe(II) production reached its maximum and 34% of the citrate-bicarbonate-dithionite extractable Fe (Fe(CBD)) was reduced to Fe(II) in the sandy soil. The peat soil showed a much faster reduction of Fe(III) and the maximum reduction of 89% of Fe(CBD) was reached after 200 d. Neoformation of a metavivianite/vivianite phase under anoxic conditions was identified by X-ray diffraction in the peat. The sandy soil exhibited small changes in the point of zero net sorption (EPC?) and P(i) desorption with increasing Fe(III) reduction, whereas in the peat soil P desorption increased from 80 to 3100 μmol kg?1 and EPC? increased from 1.7 to 83 μM, after 322 d of anoxic incubation. The fast Fe(III) reduction made the peat soils particularly vulnerable to changes in redox conditions. However, the precipitation of vivianite/metavivianite minerals may control soluble P(i) concentrations to between 2 and 3 μM in the long term if the soil is not disturbed.  相似文献   

13.
Due to geochemical processes, peat soils often have elevated concentrations of trace elements, which are gradually released following drainage for agriculture. Our objectives were to use incubation temperatures to vary microbial activity in two metalliferous peats (M7 acidic peat and M3 neutral peat) from the Elba, New York region, and to use periodic leaching to assess the extent of trace element release from these soils. Dried soils were mixed with glass beads to maintain aeration, moistened, and incubated at 4, 16, 28, and 37 degrees C in 10-cm-diameter x 8-cm-tall columns. Five incubation-leaching cycles were performed, each consisting of 7.3 d of incubation (28 d for the final cycle) followed by 16 h of leaching with synthetic acid rain at 2.5 mm h(-1). Microbial activity was determined initially and after the final leaching by measuring C mineralization following glucose stimulation. Cumulative respiration results were ranked 28 > 16 > 4 > 37 degrees C, with M7 acidic peat respiration values greater than M3 neutral peat at each temperature. Initial leachate pH levels were between 2 and 4, with acidification less pronounced and shorter-lived for the M3 peat. Leachate S, dissolved organic carbon (DOC), NO3-N, and trace elements declined with successive leachings (rebounding slightly in the final M3 leachate), with concentrations typically greater in the M7 leachate. Elemental losses followed the same general ranking (28 > 16 > 4 > 37 degrees C); losses at 28 degrees C were 15 to 22% for As, Cd, Ni, and Zn from the M7 peat; losses from M3 were comparable only for Cu (1%) and Ni (19%). The correlation of respiration with S, DOC, and trace elements losses indicates that microbial processes mediated the release of trace elements in both peat soils. Neutral M3 peat pH levels limited losses of most analytes.  相似文献   

14.
A meta‐analysis of three national databases determined the potential linkage between soil and surface and groundwater enrichment with phosphorus (P). Soil P was enriched especially under dairying commensurate with an increase in cow numbers and the tonnage of P‐fertilizers sold. Median P concentrations were enriched in surface waters receiving runoff from industrial and dairy land uses, and in groundwater beneath dairying especially in those aquifers with gravel or sand lithology, irrespective of groundwater redox status. After geographically pairing surface and groundwater sites to maximize the chance of connectivity, a subset of sites dominated by aquifers with gravel and sand lithology showed increasing P concentrations with as little as 10 years data. These data raise the possibility that groundwater could contribute much P to surface water if: there is good connectivity between surface and groundwater, intensive land use occurs on soils prone to leaching, and leached‐P is not attenuated through aquifers. While strategies are available to mitigate P loss from intensive farming systems in the short‐term, factors such as enriched soils and slow groundwater may mean that despite their use, there will be a long‐term input (viz. legacy), that may sustain surface water P enrichment. To avoid poor surface water quality, management and planning may need to consider the connectivity and characteristics of P in soil‐groundwater‐surface water systems.  相似文献   

15.
Soil testing to predict phosphorus leaching   总被引:12,自引:0,他引:12  
Subsurface pathways can play an important role in agricultural phosphorus (P) losses that can decrease surface water quality. This study evaluated agronomic and environmental soil tests for predicting P losses in water leaching from undisturbed soils. Intact soil columns were collected for five soil types that a wide range in soil test P. The columns were leached with deionized water, the leachate analyzed for dissolved reactive phosphorus (DRP), and the soils analyzed for water-soluble phosphorus (WSP), 0.01 M CaCl2 P (CaCl2-P), iron-strip phosphorus (FeO-P), and Mehlich-1 and Mehlich-3 extractable P, Al, and Fe. The Mehlich-3 P saturation ratio (M3-PSR) was calculated as the molar ratio of Mehlich-3 extractable P/[Al + Fe]. Leachate DRP was frequently above concentrations associated with eutrophication. For the relationship between DRP in leachate and all of the soil tests used, a change point was determined, below which leachate DRP increased slowly per unit increase in soil test P, and above which leachate DRP increased rapidly. Environmental soil tests (WSP, CaCl2-P, and FeO-P) were slightly better at predicting leachate DRP than agronomic soil tests (Mehlich-1 P, Mehlich-3 P, and the M3-PSR), although the M3-PSR was as good as the environmental soil tests if two outliers were omitted. Our results support the development of Mehlich-3 P and M3-PSR categories for profitable agriculture and environmental protection; however, to most accurately characterize the risk of P loss from soil to water by leaching, soil P testing must be fully integrated with other site properties and P management practices.  相似文献   

16.
A study was initiated to investigate the relationship between soil test P and depth of soil sampling with runoff losses of dissolved molybdate reactive phosphorus (DMRP). Rainfall simulations were conducted on two noncalcareous soils, a Windthorst sandy loam (fine, mixed, thermic Udic Paleustalf) and a Blanket clay loam (fine, mixed, thermic Pachic Argiustoll), and two calcareous soils, a Purves clay (clayey, smectitic, thermic Lithic Calciustoll) and a Houston Black clay (fine, smectitic, thermic Udic Haplustert). Soil (0- to 2.5-, 0- to 5-, and 0- to 15-cm depths) and runoff samples were collected from each of the four soils in permanent pasture exhibiting a wide range in soil test P levels (as determined by Mehlich III and distilled water extraction) due to prior manure applications. Simulated rain was used to produce runoff, which was collected for 30 min. Good regression equations were derived relating soil test P level to runoff DMRP for all four soil types, as indicated by relatively high r2 values (0.715 to 0.961, 0- to 5-cm depth). Differences were observed for the depth of sampling, with the most consistent results observed with the 0- to 5-cm sampling depth. Runoff DMRP losses as a function of the concentration of P in soil were lower in calcareous soils (maximum of 0.74 mg L(-1)) compared with noncalcareous soils (maximum of 1.73 mg L(-1)). The results indicate that a soil test for environmental P could be developed, but it would require establishing different soil test P level criteria for different soils or classes of soils.  相似文献   

17.
Nitrogen runoff and leaching losses from two tomato and four corn field plots were compared to model predictions by CREAMS, a field-scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems. The tomato treatments were (1) trickle irrigation with one-half of applied N at preplant and one-half of applied N through the trickle irrigation system and (2) overhead sprinkler irrigation with one-half of applied N at preplant and one-half of applied N in two equal sidedressings. The corn treatments consisted of multiple N applications, minimum tillage, and “conventional” management. Soil type appeared to influence the ability of CREAMS to predict seasonal trends and treatment influences. Model predictions for N losses from tomato and corn treatments that were located on sandy soils often disagreed with measured values. Treatment influences and seasonal trends for N losses from corn treatments that were located on a higher clay content soil were more satisfactorily predicted by CREAMS. Even though model input parameter estimation and measurement techniques may be imperfect, the simulation ability of CREAMS for predicting N leaching losses from systems on deep sands probably needs to be improved. Sensitivity analyses indicated that annual NC3?-N leaching loss predictions were either minimally or not affected by changes in saturated hydraulic conductivity. Input estimations of the fraction of soil pore space filled at field capacity and soil organic matter were inversely related to annual NO3?-N leaching losses, while potential mineralizable N was directly related to yearly N leaching losses.  相似文献   

18.
The leaching of colloidal phosphorus (P(coll)) contributes to P losses from agricultural soils. In an irrigation experiment with undisturbed soil columns, we investigated whether the accumulation of P in soils due to excess P additions enhances the leaching of colloids and P(coll) from sandy soils. Furthermore, we hypothesized that large concentrations of P(coll) occur at the onset of leaching events and that P(coll) mobilized from topsoils is retained in subsoils. Soil columns of different P saturation and depth (0-25 and 0-40 cm) were collected at a former disposal site for liquid manure and at the Thyrow fertilization experiment in northeastern Germany. Concentrations of total dissolved P, P(coll), Fe(coll), Al(coll), optical density, zeta potential, pH, and electrical conductivity of the leachates were determined. Colloidal P concentrations ranged from 0.46 to 10 micromol L(-1) and contributed between 1 and 37% to total P leaching. Large P(coll) concentrations leached from the P-rich soil of the manure disposal site were rather related to a large P-content of colloids than to the mobilization of additional colloids. Concentrations of colloids and P(coll) in leachates from P-poor and P-rich columns from Thyrow did not differ significantly. In contrast, accumulation of P in the Werbellin and the Thyrow soil consistently increased dissolved P concentrations to maximum values as high as 300 micromol L(-1). We observed no first-flush of colloids and P(coll) at the beginning of the leaching event. Concentrations of P(coll) leached from 40-cm soil columns were not smaller than those leached from 25-cm columns. Our results illustrate that an accumulation of P in sandy soils does not necessarily lead to an enhanced leaching of colloids and P(coll), because a multitude of factors independent from the P status of soils control the mobility of colloids. In contrast, P accumulation generally increases dissolved P concentrations in noncalcareous soils due to the saturation of the P sorption capacity. This indicates that leaching of dissolved P might be a more widespread environmental problem in areas with P-saturated sandy soils than leaching of P(coll).  相似文献   

19.
Phosphate treatment of lead (Pb)-contaminated soils relies on the premise that Pb converts to the thermodynamically stable, insoluble mineral class of pyromorphites. Recent research showed that treatment performance is kinetically controlled and strongly dependent on soil pH; this study employed an acidic phosphate (P) form, monobasic calcium phosphate (MCP), to investigate treatment performance of Pb occurring in an alkaline-buffered and an acidic firing range soil. The results of leaching, X-ray powder diffraction (XRPD), and modeling analyses showed that P and Pb dissolution in the alkaline soil and transformation reactions were kinetically controlled, so that: (i) TCLP (toxicity characteristic leaching procedure) and SPLP (synthetic precipitation leaching procedure) results were poor to marginal even at high MCP dosages; (ii) brushite (Ca(HPO(4)).2H(2)O) and cerussite (PbCO(3)) persisted in XRPD patterns; and, (iii) geochemical modeling failed to predict leaching and phase assemblages. In the acidic soil, Pb-P reactions promoted further soil acidification, improved TCLP performance, and generated better agreement with the equilibrium-based model; however, SPLP and modeling results showed that Pb concentrations could not be reduced below 15 microg/L mainly due to the low soil pH. The marginal or inadequate Pb immobilization was observed in both soils despite the elevated MCP dosages, which were well in excess of the pyromorphite stoichiometric ratio (P/Pb = 0.6). Additionally, P leaching concentrations and rates were extremely high (>300 mg/L), under both SPLP and deionized (DI) water extraction conditions, and as predicted by thermodynamic equilibrium. The performance and sustainability of phosphate-based treatment therefore seem questionable.  相似文献   

20.
ABSTRACT: Concerns have been expressed about the potential insecticide contamination of regional water resources from a boll weevil eradication program in Oklahoma. A mathematical model and geographic information system techniques were utilized to evaluate the potential of insecticide leaching and runoff from a major proposed program area in the state. Different but equally likely weather patterns were generated, and potential insecticide losses associated with each pattern were predicted. Soil types and their locations within cotton areas were identified, and potential chemical losses from each soil were delineated. Model simulations indicated that azinphos-methyl and diflubenzuron could leach from some porous soils and that all insecticides suggested for use in the program could be lost to runoff. The predicted chemical movements with runoff were significantly higher on irrigated land than from non-irrigated land. Malathion demonstrated no leaching and low potential of runoff losses among the insecticides evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号