首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
常兰  向容瑶  张梅 《四川环境》2020,39(5):119-123
利用食品废弃物柚子果皮为碳源制备活性炭,研究了其对放射性铀元素的吸附效果。考察了pH值、吸附时间、初始浓度等对吸附的影响,并对不同温度下的吸附数据用langmuir方程和Freundlich方程进行了拟合。结果表明,柚子皮活性炭对铀离子的吸附在120min达到平衡,平衡吸附量随着铀离子初始浓度和吸附剂投加量的增大而增大;柚子皮活性炭对铀的吸附能力随温度的升高而增大,langmuir等温吸附模型更适合描述其吸附行为;在318K时,理论最大吸附容量为12.10mg/g。  相似文献   

2.
本实验目的是研究草木灰对吸附亚甲基蓝的去除效果,探讨了亚甲基蓝初始量、吸附时间、pH值等对吸附效果的影响,并运用伪一级、伪二级反应动力学模型和Laugmuir、Freundlich等温线模型进行拟合。结果表明,草木灰对亚甲基蓝溶液的吸附在5 min~30 min速率比较快,约在65 min内达到吸附平衡,pH越大越有利于吸附,浓度在5mg/L时草木灰对亚甲基蓝的吸附最佳。与伪二级动力学曲线模型拟合效果较好,由Laugmuir等温线模型计算得出理论最大吸附容量Qm为2.275 mg/g,吸附性能优异。  相似文献   

3.
改性玉米秸秆吸附去除废水中四环素的研究   总被引:1,自引:0,他引:1  
应用平衡吸附法,研究了不同投加量(改性玉米秸秆)、温度及pH条件下,改性玉米秸秆对水体中四环素的吸附作用,并利用等温曲线及吸附动力学方程对试验结果进行了拟合。结果表明:在吸附剂用量0.4g,温度30℃,振荡时间30min,pH值7的条件下,对水体中四环素浓度为50.136mg/L的吸附率可达93.4%。四环素废水吸附均符合Langmuir及Freundlich等温模式。但Langmuir方程拟合得较好,Elovich方程能更好地拟舍改性玉米秸秆对水体中四环素的吸附动力学曲线。  相似文献   

4.
采用3-氨丙基三甲氧基硅烷对MCM-41进行氨基功能化修饰,并以此作为吸附剂(NH2-MCM-41)来去除阴离子染料废水酸性品红(AF).应用平衡吸附法,重点考察了溶液的pH值、吸附剂的投加量、吸附时间以及染料的初始浓度对吸附效果的影响,并采用吸附等温线和动力学模型进行吸附机理分析.实验得出:溶液的pH值对吸附效果影响...  相似文献   

5.
以牛粪生物炭为吸附剂,通过静态吸附实验研究牛粪生物炭对磷的吸附特性。研究了pH值、投加量等对牛粪生物炭吸附磷的影响。结果表明,牛粪生物炭吸附磷的最佳初始pH值为6.0;当投加量为0.1 g时,对磷的去除较为理想;通过对动力学数据进行分析,发现准二级动力学(R~2=0.999)比准一级动力学方程(R~2=0.5 886)和Elovich方程(R~2=0.927)能更好的拟合动力学数据,颗粒内扩散方程拟合结果发现牛粪生物炭对磷的吸附包括表面吸附和颗粒内扩散两个过程。吸附等温线拟合发现Langmuir吸附等温方程能很好拟合等温吸附数据,表明生物炭对磷的吸附以单分子层吸附模式为主。  相似文献   

6.
文章重点研究超高交联树脂NDA-100对苯酚的静态吸附动力学,通过动力学实验探讨了不同温度和初始浓度对吸附苯酚的影响,实验结果表明:苯酚在NDA-100树脂上的静态吸附动力学过程符合准二级动力学方程,其吸附速率受膜扩散和颗粒内扩散共同控制,对于高浓度的苯酚溶液微孔填充占主导作用,而低浓度的苯酚溶液表现为先经过大孔吸附后经由微孔填充两个阶段,低浓度吸附时出现双平台动力学现象。进一步阐述了超高交联树脂对于酚类化合物的吸附机理,为树脂固定床吸附酚类化合物的研究和实际工业应用提供理论基础。  相似文献   

7.
研究了pH值、吸附接触时间、铜离子的初始浓度及活性炭纤维(ACF)的投加量对活性炭纤维吸附Cu2+的影响,并选取了最佳的实验条件。用Langmuir方程和Freundlich方程拟合活性炭纤维对Cu2+吸附等温线,结果表明:活性炭纤维吸附Cu2+更符合Langmuir等温式,其相关系数为0.9995,以单分子层吸附为主。对活性炭纤维改性能明显提高对Cu2+的吸附,其中效果最佳的吸附量从4.8mg/g增加到17.32mg/g,提高了3.6倍。  相似文献   

8.
在花生壳吸附剂量为1.0g、pH2.0、温度30℃、振荡速度140r/min、吸附时间360min条件下,实验研究了不同初始浓度(50 mg/L、75 mg/L、100 mg/L、125 mg/L、150 mg/L)的Cr(Ⅵ)溶液等温吸附曲线。研究结果表明,Langmuir等温吸附模型符合得更好;该吸附是一个优先吸附过程;最大饱和吸附量为6.25mg/g。  相似文献   

9.
铀吸附实验研究现状   总被引:3,自引:0,他引:3  
李爽  倪师军  张成江 《四川环境》2007,26(1):77-79,84
介绍了铀吸附实验的研究现状,对吸附铀的各种载体进行了总结。目前,主要采用静态法(批示法)和动态法(柱法)进行铀的吸附实验研究。吸附铀的载体主要有粘土,金属的水合氧化物等肢体,藻类及菌类,树脂等。主要考察pH值、温度、吸附时间、阴离子、阳离子、细菌浓度、铀浓度等对吸附速率及吸附量的影响。  相似文献   

10.
为充分了解重金属汞在土壤中吸附解吸特征,运用振荡平衡法对重庆市秀山地区某汞污染企业周边背景土壤进行Hg2+的吸附解吸实验,探究土壤中汞的等温吸附解吸过程及吸附动力学特征。结果表明:Langmuir模型对汞在土壤中的等温吸附过程拟合效果最好(相关系数为0.999 2),供试土壤对汞的最大吸附量为863.62mg/kg;Freundlich模型能更好地拟合汞在土壤中的解吸过程(相关系数为0.981 1),汞的最大解吸量为16.840 7mg/kg,汞在土壤中的解吸率较低,最大解吸率仅为3.65%;Elovich模型和双常数模型对汞在土壤中的吸附动力学过程模拟能够达到较显著水平,相关系数分别达到0.893 5和0.837 0。  相似文献   

11.
ABSTRACT Spring runoff from two forested watersheds in northern Minnesota is a function of annual snowfall, soil water recharge, and water supply rates. A drainage basin with a clay soil and a hardwood overstory had greater snowmelt and water supply rates than another drainage basin with a sandy soil and conifer overstory. The average soil water recharge rate for the clay soil was 28 percent less than for the sandy soil. The lower recharge rate of the clay soil resulted in spring runoff which averaged 40 percent of water supplied during the three year study while an average of two percent was produced on the sandy soil. Soil frost which affected soil water recharge varied between soil types and was influenced by amount of soil water storage and snow cover.  相似文献   

12.
The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil.  相似文献   

13.
Sorption of butachlor to various types of common soil components was investigated. Six pure minerals (montmorillonite [Mont], kaolinite [Kaol], Ca homoionic montmorillonite [Ca-Mont] and kaolinite [Ca-Kaol], amorphous hydrated Al and Fe oxides [AHOs-Al, AHOs-Fe]), four soil alkali-extractable pure humic acids (HAs), and the four corresponding HAs originated real unmodified and HO-treated soils were selected as the representative sorbents. Results showed that the HAs played a crucial role, and clay minerals (especially Mont) also showed an important effect in butachlor sorption. The AHOs may likely influence only in a mediator way by enhancing the availability of sorption domains of HAs. By removing 78% (on average) of the total organic carbon (TOC) from the soils with HO, the content ratio of clay to TOC (RCO) increased by an average of 367% and became >60. This change simultaneously decreased the sorption capacity of soils (40%, on average). Considering that the surface sorption domain on clay minerals may be highly exposed and more competitive after the partial removal of soil organic matter (SOM), this reaffirmed the potential contribution from clay minerals. It can thus be inferred that in the real soil where SOM and clay minerals are associated, the coating of clay minerals may have weakened the partition function of SOM or blocked some sorption domain within SOM, resulting in a decreased sorption of butachlor. Therefore, clay minerals, especially 2:1 type expanding minerals, may play a dual function vs. SOM content for the sorption of butachlor in soil.  相似文献   

14.
The probability of exceeding critical thresholds of Cd concentrations in the soil was mapped at a national scale. The critical thresholds in soil were based on food quality criteria for Cd in crops or in organs of cattle (Bos taurus), and were calculated by inverting a regression model for the Cd concentration in the crop, with the Cd concentration in soil, soil organic matter (SOM) content, clay content, and pH as predictors. The probability of exceeding the critical threshold for Cd in soil per node of a 500- x 500-m grid was approximated by Monte Carlo simulation, using the estimated cumulative distribution functions (cdf) of SOM, clay, pH, and Cd as input. The cdfs were estimated by simple indicator kriging with local prior means. For SOM, clay, and pH, detailed maps of soil type and land use were used to define subregions with assumed constant local means of the indicators (a priori distributions). The cdfs were sampled by Latin hypercube sampling. We accounted for correlation between the actual and critical Cd concentrations in soil by drawing Cd values from cdfs conditional on SOM and clay. The estimated probability for grassland is negligible, even in areas with high Cd concentrations in soil, and for maize (Zea mays L.) land the probability is almost everywhere smaller than 5%. For arable soils, however, these probabilities commonly are larger than 5% when sugar beet (Beta vulgaris L.) or wheat (Triticum aestivum L.) is taken as a reference crop, and locally exceed 50%.  相似文献   

15.
There are numerous Cr(III)-contaminated sites on Department of Defense (DoD) and Department of Energy (DOE) lands that are awaiting possible clean up and closure. Ingestion of contaminated soil by children is the risk driver that generally motivates the likelihood of site remediation. The purpose of this study was to develop a simple statistical model based on common soil properties to estimate the hioaccessibility of Cr(III)-contaminated soil upon ingestion. Thirty-five uncontaminated soils from seven major soil orders, whose properties were similar to numerous U.S. DoD contaminated sites, were treated with Cr(III) and aged. Statistical analysis revealed that Cr(III) sorption (e.g., adsorption and surface precipitation) by the soils was strongly correlated with the clay content, total inorganic C, pH, and the cation exchange capacity of the soils. Soils with higher quantities of clay, inorganic C (i.e., carbonates), higher pH, and higher cation exchange capacity generally sequestered more Cr(III). The amount of Cr(III) bioaccessible from the treated soils was determined with a physiologically based extraction test (PBET) that was designed to simulate the digestive process of the stomach. The bioaccessibility of Cr(III) varied widely as a function of soil type with most soils limiting bioaccessibility to <45 and <30% after I and 100 d soil-Cr aging, respectively. Statistical analysis showed the bioaccessibility of Cr(III) on soil was again related to the clay and total inorganic carbon (TIC) content of the soil. Bioaccessibility decreased as the soil TIC content increased and as the clay content decreased. The model yielded an equation based on common soil properties that could be used to predict the Cr(III) bioaccessibility in soils with a reasonable level of confidence.  相似文献   

16.
ABSTRACT: A rainfall simulator was used on runoff plots to study the effects of simulated canopy cover, trampling disturbance, and soil type on nil and interrill erosion. Sandy loam soil was more erodible than clay loam soil. Furthermore, the simulated canopy cover signffi-Soilfactorsrelatedtonil cantly influenced nil and interrill erosion. The effect of trampling on rill and interrill erosion varied with soil type (clay loam versus sandy loam) and erosion type (nh versus interrill erosion). On large plots, where both nil and internill erosion were involved, 30 percent trampling significantly increased soil loss. However, on small plots, 30 percent trampling significantly reduced interrill erosion.  相似文献   

17.
Phosphorus (P) leaching losses from manure applications may be of concern when artificial drainage systems allow for hydrologic short-cuts to surface waters. This study quantified P leaching losses from liquid manure applications on two soil textural extremes, a clay loam and loamy sand soil, as affected by cropping system and timing of application. For each soil type, manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring. Drain water was sampled at least weekly when lines were flowing, and outflow rate and total P content were determined. High P leaching losses were measured in the clay loam as soon as drain lines initiated flow after manure application. Flow-weighted mean P leaching losses on clay loam plots averaged 39 times higher (0.504 mg L(-1)) than those on loamy sand plots (0.013 mg L(-1)), and were above the USEPA level of concern of 0.1 mg L(-1). Phosphorus losses varied among application seasons on the clay loam soil, with highest losses generally measured for early fall applications. Phosphorus leaching patterns in clay loam showed short-term spikes and high losses were associated with high drain outflow rates, suggesting preferential flow as the main transport mechanism. Phosphorus leaching from manure applications on loamy sand soils does not pose environmental concerns as long as soil P levels remain below the saturation level.  相似文献   

18.
Subsurface soil water dynamics can influence crop growth and the fate of surface-applied fertilizers and pesticides. Recently, a method was proposed using only ground-penetrating radar (GPR) and digital elevation maps (DEMs) to identify locations where subsurface water converged into discrete pathways. For this study, the GPR protocol for identifying horizontal subsurface flow pathways was extended to a 3.2-ha field, uncertainty is discussed, and soil moisture and yield patterns are presented as confirming evidence of the extent of the subsurface flow pathways. Observed soil water contents supported the existence of discrete preferential funnel flow processes occurring near the GPR-identified preferential flow pathways. Soil moisture also played a critical role in the formation of corn (Zea mays L.) grain yield patterns with yield spatial patterns being similar for mild and severe drought conditions. A buffer zone protocol was introduced that allowed the impact of subsurface flow pathways on corn grain yield to be quantified. Results indicate that when a GPR-identified subsurface clay layer was within 2 m of the soil surface, there was a beneficial impact on yield during a drought year. Furthermore, the buffer zone analysis demonstrated that corn grain yields decreased as the horizontal distance from the GPR-identified subsurface flow pathways increased during a drought year. Averaged real-time soil moisture contents at 0.1 m also decreased with increasing distance from the GPR-identified flow pathways. This research suggests that subsurface flow pathways exist and influence soil moisture and corn grain yield patterns.  相似文献   

19.
Interactions of carbamazepine in soil: effects of dissolved organic matter   总被引:2,自引:0,他引:2  
Pharmaceutical compounds (PCs) and dissolved organic matter (DOM) are co-introduced into soils by irrigation with reclaimed wastewater. We targeted carbamazepine (CBZ) as a model compound to study the tertiary interactions between relatively polar PCs, DOM, and soil. Sorption-desorption behavior of CBZ was studied with bulk clay soil and the corresponding clay size fraction in the following systems: (i) without DOM, (ii) co-introduced with DOM, and (iii) pre-adsorption of DOM before CBZ introduction. Sorption of the DOM to both sorbents was irreversible and exhibited pronounced sorption-desorption hysteresis. Carbamazepine exhibited higher sorption affinity and nonlinearity, and a higher degree of desorption hysteresis with the bulk soil than the corresponding clay size fraction. This was probably due to specific interactions with polar soil organic matter fractions that are more common in the bulk soil. Co-introduction of CBZ and DOM to the soil did not significantly affect the sorption behavior of CBZ; however, following pre-adsorption of DOM by the bulk soil, an increase in sorption affinity and decrease in sorption linearity were observed. In this latter treatment, desorption hysteresis of CBZ was significantly increased for both sorbents. We hypothesize that this was due to either strong chemical interactions of CBZ with the adsorbed DOM or physical encapsulation of CBZ in DOM-clay complexes. Based on this study, we suggest that DOM facilitates stronger interactions of polar PCs with the solid surface. This mechanism can reduce PC desorption ability in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号