首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
本研究于2015年12月至2016年2月在徐州市城区采集大气细颗粒物PM_(2.5)样品共32套,使用离子色谱法分析了颗粒物中的F~-、Cl~-、NO_3~-、SO2-4、Na~+、Mg~(2+)、NH_4~+、K~+和Ca~(2+)的质量浓度.观测期间,徐州市冬季PM_(2.5)的平均质量浓度为(164.8±77.3)μg·m-3,9种水溶性离子总质量浓度为(67.5±36.1)μg·m~(-3),占PM_(2.5)的40.9%,各离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-Ca~(2+)K~+Na~+Mg~(2+)F~-,其中NH_4~+、NO_3~-和SO_4~(2-)是最主要的水溶性离子.清洁大气、轻度霾和重度霾时期PM_(2.5)中总水溶性无机离子(WSIIs)质量浓度分别为(12.8±8.8)、(59.0±22.8)、(86.3±36.0)μg·m~(-3),SNA分别占WSIIs的86.4%、82.8%和78.9%.NH_4~+、NO_3-和SO_4~(2-)三者之间相关性显著,在PM_(2.5)中的结合方式为(NH_4)_2SO_4和NH_4NO_3.徐州市PM_(2.5)中水溶性离子的主要来源为二次转化、生物质燃烧、化石燃料燃烧和矿物粉尘等.  相似文献   

2.
内江市大气细颗粒物化学组成及其消光特征   总被引:1,自引:1,他引:1  
2012—2013年在内江市环境监测站楼顶采集了PM_(10)和PM_(2.5)样品,并分析了颗粒物中金属无机元素、水溶性离子和碳质组分的质量浓度,以研究颗粒物的污染水平及其消光特性.采样期间,内江市的PM_(10)和PM_(2.5)浓度分别为(116.3±54.7)μg·m~(-3)和(78.6±36.8)μg·m~(-3);颗粒物污染冬季较重,其次为秋季,春季和夏季污染水平相当.内江市PM_(2.5)中以二次无机离子(SNA,42.5%)和有机物(OM,35.0%)污染最为突出,其次为地壳元素(Soil,11.4%)、元素碳(EC,5.2%)和微量元素(Trace,0.3%).高相对湿度和细颗粒物浓度是导致内江灰霾频发的主要原因,10km能见度对应的PM_(2.5)浓度界值为72.2μg·m~(-3).采用IMPROVE模型计算,内江市PM_(2.5)的平均散射系数为(504.6±293.2)Mm-1,吸光系数平均为(41.0±20.6)Mm-1;PM_(2.5)中硫酸盐对消光系数贡献最大,占40.0%;其次为有机物和硝酸盐,贡献率分别是29.2%和15.3%;EC的贡献率为7.3%.PM_(2.5)质量浓度与散射系数呈现出较强的线性关系(r=0.88),通过回归方程得到PM_(2.5)的质量散射效率为4.2 m~2·g~(-1).  相似文献   

3.
为了解咸宁细颗粒物(PM2.5)来源,对2019年在湖北咸宁两个环境受体点位采集的不同季节大气中PM2.5样品中的主要成分和化学元素进行统计研究;通过颗粒物排放源采样建立本地特征源谱,用化学质量平衡(CMB)受体模型解析其来源;通过VOCs离线监测数据分析其中二次气溶胶(SOA)生成关键组分,并对关键组分进行来源解析.结果表明,咸宁市PM2.5超标情况主要出现在冬季,PM2.5中主要化学成分以水溶性无机盐和含碳组分为主;一次解析揭示硝酸盐、硫酸盐和铵盐等的二次转化对PM2.5浓度的贡献最大,总贡献率在45%以上;二次解析揭示工业源、机动车源及电厂对PM2.5浓度的贡献最大;VOCs对二次有机气溶胶贡献最高的组分为芳香烃,关键组分为苯、甲苯、间/对-二甲苯和乙基苯,对关键组分来源分析发现主要来源为溶剂使用.控制工业排放、机动车排放及调整能源结构是目前控制咸宁PM2.5的主要途径,同时也要考虑控制溶剂排放的芳香烃.  相似文献   

4.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境空气中一类重要的有毒化合物,为探究兰州市大气细颗粒物(fine particulate matter,PM_(2.5))中PAHs的污染特征,于2012年冬季和2013年夏季采集兰州市PM_(2.5)样品共60个,并进行了GC/MS分析.结果表明,16种PAHs的冬、夏季平均总质量浓度分别为(191.79±88.29)ng·m~(-3)和(8.94±4.34)ng·m~(-3),冬季污染程度明显严重;降雪是导致兰州冬季大气PM_(2.5)中PAHs质量浓度降低最主要的气象因素;冬、夏季PAHs的环数分布均以4环比例最大,分别为51.40%和49.94%,5~6环比例夏季41.04%,高于冬季24.94%,2~3环比例冬季23.67%,高于夏季9.03%;通过PAHs的特征比值分析,兰州大气PM_(2.5)中PAHs的来源冬季以燃煤源和机动车尾气为主,其中柴油车比例较大;夏季汽油车对PAHs的相对贡献较大.  相似文献   

5.
成都市大气细颗粒物组成和污染特征分析(2012-2013年)   总被引:14,自引:4,他引:14  
陈源  谢绍东  罗彬 《环境科学学报》2016,36(3):1021-1031
为了解成都市大气细颗粒物的污染特征,于2012年5月-2013年5月在成都市城区开展了每6 d采集1次样品的长期颗粒物观测.利用十万分之一分析天平、热光碳分析仪、离子色谱、电感耦合等离子体质谱(ICP-MS)分别分析了颗粒物样品的质量浓度、有机碳/元素碳、水溶性离子、无机元素等,同步收集了污染物在线观测数据、气象数据和卫星遥感数据.结果表明,采样期间,成都市可吸入颗粒物(PM10)和细粒子(PM2.5)浓度颗粒物浓度分别高达(129.7±76.4)和(91.6±54.3) μg·m-3,PM2.5中以二次无机离子(SNA,43.6%)和有机物(OM,31.2%)污染最为突出,其次为土壤组分(Soil,13.8%)、元素碳(EC,5.0%)和微量元素(Trace,0.8%);1月、3月、5月和10月是污染较重的月份.通过比较揭示了不同污染源影响下的典型污染特征.生物质燃烧期间,成都城区PM2.5浓度达214.3 μg·m-3,PM2.5/PM10比达0.89,其中OM贡献增加至57.2%,K+浓度达8.7 μg·m-3,OC/EC比达8.3,SNA比重下降;而沙尘传输期间,PM2.5浓度为122.6 μg·m-3,仅占PM10浓度的0.28,PM2.5中土壤组分比例剧增至77.3%,SNA和无机元素的比重明显下降;静稳天气下PM2.5浓度为261.0 μg·m-3,各组分比重并无明显变化,硝酸盐和铵盐比例稍有增加.  相似文献   

6.
濮阳市作为京津冀周边地区大气污染传输通道城市之一,秋冬季重污染天气频发,空气污染问题严峻.为了研究濮阳市秋冬季大气细颗粒物污染特征及其主要来源,于2017年10月15日至2018年1月13日在濮阳市3个国控点对PM_(2.5)进行了手工膜采样与化学组分分析,并结合PMF受体模型,开展了细颗粒物来源解析研究.结果表明,濮阳市2017年秋冬季PM_(2.5)平均质量浓度为94. 16μg·m~(-3),濮水河管理处的污染状况最严重,进入采暖季后3站点均表现为重度及严重污染事件频发,轻度污染发生频率降低,重污染发生时NO_2与CO浓度升高明显. PM_(2.5)中的主要组分为水溶性离子(52. 33%)、碳质组分(25. 32%)和地壳元素(0. 08%),NO_3~-的含量高而SO_4~(2-)的浓度水平较低.重污染发生时,PM_(2.5)中水溶性离子、OC、EC和K浓度都出现了明显的升高,而地壳元素浓度降低.采样期间濮阳市的硫氮转化率水平较高,大气氧化性较强,硫氮转化促进了重污染的发生.濮阳市2017年NOx、CO和VOCs排放量较高,来源解析结果表明,濮阳市秋冬季PM_(2.5)主要来源分别为二次无机盐(37%)、工业源(16%)、二次有机气溶胶SOA(14%)、生物质燃烧源(12%)、移动源(9%)、燃煤源(7%)和扬尘源(4%).可见,二次转化在濮阳重污染的形成过程中起到重要作用,要减轻大气细颗粒物污染,需要重点控制工业源、生物质燃烧、移动源和民用散煤燃烧的排放.  相似文献   

7.
本研究改进了传统有机样品前处理步骤,将大气细颗粒物样品直接装填于TD管并与气相色谱联用的自动化热脱附装置,建立的新型热脱附(thermo desorption,TD)与气相色谱/质谱(GC/MS)联用方法,对72种非极性有机物(non-polar organic compounds,NPOCs),包括34种多环芳烃(polylicycle aromatic hydrocarbon,PAHs)、1种苯并噻吩、27种(C_(10)~C_(34))烷烃(alkanes)、5种霍烷(hopanes)和5种甾烷(steranes)化合物进行定量分析.优化了承载样品装填方式、热脱附条件和进样模式等参数.结果表明,热脱附-气相色谱/质谱方法对多环芳烃、正构烷烃、霍烷和甾烷的检出限分别为0.01~1.0、0.1~8.0和0.50~2.0 ng·m~(-3),标定曲线线性相关系数在0.9以上.热脱附效率分别为:多环芳烃95%~100%、正构烷烃81%~100%、霍烷和甾烷83.1%~100%.与传统溶剂超声萃取的方法差异性比较结果表明,两种方法分析结果的偏差基本小于30%,在可接受范围内.对临安和上海PM_(2.5)中的痕量NPOCs的定量分析表明,采样期间两地大气PM_(2.5)中NPOCs以烷烃为主,其次为PAHs.特征比值法分析结果表明,大气细颗粒物污染主要来自化石燃料燃烧和煤炭燃烧.  相似文献   

8.
为探究川南城市群(自贡、泸州、内江和宜宾)冬季大气重污染过程中PM2.5 中金属元素的浓度特征和来源,在2018年12月30日至2019年1月14日,使用膜采样方法对PM2.5 中的金属元素进行测定,并运用富集因子法(EF)和正定矩阵因子分解法(PMF)对金属元素来源进行解析.同时采用自贡市在2015年同期金属元素观测数据,探究自贡市在“大气十条”实施中期与实施结束后的金属元素污染与富集程度变化情况.结果表明:①不同城市细颗粒物中各金属元素浓度与占比差异不大,4个城市中浓度与占比较高的元素呈现相似性,Al、Sb和Fe元素占比位于前列.从自贡市不同观测期对比来看,除Tl外各元素浓度均有变化.②富集因子计算结果表明,城市群中Cr(自贡与宜宾)、Ni、Cu、As、Se、Ag、Cd、Sb、Tl和Pb元素的富集程度较高.自贡市不同观测期的元素富集程度对比显示,除Cu元素外,2018年冬季观测期各元素富集程度均有减小趋势.③PMF源解析结果表明,各城市中金属元素主要来源为扬尘源、燃煤源、工业源与交通源,同时各污染源之间存在混合贡献.各城市主要污染源贡献不同,自贡以交通扬尘源与混合源为主;泸州以工业源为主;内江市各污染源贡献占比相近;而宜宾市则以交通源为主导.  相似文献   

9.
邯郸市大气颗粒物污染特征的监测研究   总被引:5,自引:1,他引:5  
使用振荡天平颗粒物在线监测仪连续监测了邯郸市PM10和PM2.5浓度,分析了2012年7月31日—12月2日4个月内PM10、PM2.5的浓度水平、时变规律和PM2.5/PM10的变化情况.结果表明,监测时段内PM10和PM2.5的日均浓度平均值分别为208.4 μg·m-3和99.1 μg·m-3,是国家二级标准的1.4倍和1.3倍;浓度超标的天数占总观测天数的61.6%和60.0%,其污染程度与北京、天津相当,属污染较严重的地区.PM2.5/PM10在19.3%~89.8%之间周期性波动,平均值为49.4%,接近北方城市的平均水平.PM10和PM2.5的浓度变化具有很好的正相关性;日均值在4个月中呈现明显的周期性变化和月际波动,10、11月的PM10和PM2.5浓度变化剧烈且大大高于8、9月份.PM10和PM2.5浓度一天中小时均值的变化呈同步的双峰型分布,最高值出现在9:00和20:00左右,最低值出现在15:00~17:00之间.本研究系统分析了夏秋季节邯郸市大气颗粒物污染状况,以期为当地颗粒物污染的控制提供科学依据.  相似文献   

10.
为研究张掖市城区大气细颗粒物(PM2.5)的污染特征和来源,于2020年9月至2021年7月在张掖市城区的河西学院和湿地博物馆2个采样点进行了PM2.5样品采集,对PM2.5浓度、化学组成(水溶性无机离子、碳质组分和元素)和来源进行分析.结果表明,河西学院和湿地博物馆两个采样点的年均ρ(PM2.5)分别为(73.7±31.8)μg·m-3和(68.1±33.3)μg·m-3,季节浓度均值均呈现春季>冬季>秋季>夏季的变化.河西学院采样点的二次水溶性无机离子(SO42-、NO3-和NH4+)年均值高于湿地博物馆.河西学院采样点的ρ(OC)和ρ(EC)分别为(9.6±5.7)μg·m-3和(2.9±1.6)μg·m-3,湿地博物馆采样点的年均ρ(OC)和ρ(EC)分别为(9.2±5.8)μg·m-3和(2.5±1.3)μg·m-3,河西学院的含碳组分在各季节均高于湿地博物馆.河西学院和湿地博物馆两个采样点的年均二次有机碳(SOC)在OC中的质量分数分别为49.4%和43.7%,表明张掖市存在较为严重的二次污染.河西学院和湿地博物馆两个采样点的元素浓度年均值分别为(6.0±3.5)μg·m-3和(5.8±3.9)μg·m-3,受到人为源的影响,Zn、Ca、Al和Fe等元素浓度水平相对较高.正定矩阵因子分解模型(PMF)结果表明,张掖城区PM2.5的主要贡献源为二次气溶胶(28.0%)、交通源(25.8%)、扬尘源(15.2%)、燃煤源(14.0%)、生物质燃烧和垃圾焚烧源(12.5%)和工艺过程源(4.5%).  相似文献   

11.
于2015年10月、12月和2016年3月、8月在重庆大学A区采集秋、冬、春、夏4个季节PM2.5样品,观察其微观形貌,分析含碳气溶胶及其碳组分的浓度水平,并探讨其季节变化及进行来源解析.结果表明,重庆沙坪坝区PM2.5中有机碳(OC)、元素碳(EC)、烟灰(char)和烟炱(soot)的年均质量浓度分别为20.66、6.16、5.42和0.74 μg·m-3.OC季节变化显著,冬季最高,夏季最低;EC秋季最高,冬季最低,但与其它季节相差不大;char表现为秋季 > 春季 > 冬季 > 夏季;soot表现为秋季 > 夏季 > 春季 > 冬季.正定矩阵因子(PMF)解析出3个因子,分别代表生物质/煤燃烧和道路扬尘的混合源(52.7%)、汽油机动车排放源(22.9%)和柴油机动车排放源(24.4%).机动车尾气是秋、春和夏3个季节含碳气溶胶的主要来源,冬季主要受煤炭/生物质燃烧和道路扬尘混合源的影响.秋季污染事件可能是因为本地及周边城市汽油车通行量增加,冬季污染事件可能是本地煤炭/生物质燃烧排放增加和周边农村地区输入的共同作用,春季污染事件可能与来自西北方向的沙尘长距离传输有关.  相似文献   

12.
采集北京市2014年冬、春、夏、秋4个季节代表月1、4、7、10月的大气细颗粒物PM2.5样品,分析研究了PM2.5质量浓度、化学特征、季节变化和污染成因.同时,采用正交矩阵因子分析法(PMF)对PM2.5进行了来源解析.结果表明,北京市2014年PM2.5年均浓度为87.74μg/m3,是国家环境空气质量标准年均浓度限值的2.5倍.轻、重污染期间,PM2.5浓度较常日分别增加了1.5和3.9倍,其季节变化表现为冬季 >夏季 >秋季 >春季.地壳元素Mg、Al、Fe、Ca、Ti在轻度污染和重度污染期间较常日略有升高,分别是常日浓度的1.1~1.2倍和1.2~1.5倍.污染元素S、Pb、Zn、Cu浓度变化显著,轻度污染和重度污染期间分别是常日浓度的1.3~2.7倍和1.9~5.9倍.S元素是PM2.5中受人为活动影响较为严重的组分,其相应的SO42-年均浓度为13.43μg/m3,在轻度污染和重度污染期间分别是常日浓度的2.7和5.9倍.硫酸盐的形成主要受O3浓度、温度、相对湿度等气象要素的协同影响,较高的O3浓度、较高温度和相对湿度有利于硫酸盐的生成.PM2.5主要来源于机动车排放、燃煤、地面扬尘和工业排放,其贡献率分别为37.6%、30.7%、16.6%和15.1%.  相似文献   

13.
基于单颗粒气溶胶质谱仪(SPAMS)观测数据、颗粒物质量浓度数据和气象要素数据,研究了2017年11月西安市一次重污染过程中细颗粒物的化学组分特征及其成因,并使用正矩阵因子分析法(PMF)对细颗粒进行了来源解析.结果表明,西安市冬季重污染过程中细颗粒物主要类型为有机碳(OC)、元素碳(EC)、混合碳(ECOC)、富钾(K)、钠-钾(Na-K)、有机胺(amine)、矿尘(dust)和重金属(HM),其主要来源为燃煤(24.9%),二次(29.3%),工业(19.3%),交通(13.3%),生物质燃烧(5.2%)和扬尘(1.9%).通过对比分析不同污染过程细颗粒物的理化特征,发现高湿度,低风速的不利气象条件和供暖及工业生产导致的燃煤污染、二次污染,是此次重污染过程的主因.  相似文献   

14.
采用大流量气溶胶采样器采集了重庆市万州城区2013年夏季和冬季大气中PM_(2.5)样品,并运用气相色谱-质谱联用技术对PM_(2.5)中22种(C12~C33)正构烷烃的含量进行了测定,进而对万州城区PM_(2.5)中正构烷烃的污染特征及来源进行了分析.结果表明,万州城区夏、冬季大气PM_(2.5)中均检测出C12~C33正构烷烃,主峰碳均为C29和C31.夏、冬季PM_(2.5)中正构烷烃日均总浓度分别为158.70 ng·m-3和257.20 ng·m-3,碳优势指数CPI分别为1.63和1.82,CPI1分别为0.61和0.67,CPI2分别为1.83和1.96,植物蜡参数Wax C平均值分别为53.44%和55.53%.万州城区大气细颗粒物中n-alkanes受到来源于陆源高等植物蜡的排放等生物源及化石燃料燃烧等人为源的共同影响,且生物源的影响较大.  相似文献   

15.
赵倩彪  胡鸣  伏晴艳 《中国环境科学》2022,42(11):5036-5046
2016~2020年在上海市区和郊区的6个点位开展了颗粒物系统性观测研究,分析了PM2.5的质量浓度以及水溶性离子、有机碳/元素碳、无机元素等化学组分,并利用正矩阵因子分解模型对PM2.5的来源进行了解析。结果表明,上海PM2.5浓度水平呈现下降趋势,年均质量浓度依次为46,43,37,40,39μg/m3,表现为冬高夏低,西高东低的时空分布特征。有机物在PM2.5中占比最高(30%~32%),不同年份和季节间的差异较小。二次无机离子(硫酸盐、硝酸盐和铵盐)的区域性特征明显,其中硝酸盐的占比在5a间升高最多,且在冬季污染过程中起到了关键作用。解析得到PM2.5的来源有9类,分别为二次硝酸盐(30.6%)、二次硫酸盐(20.7%)、机动车(12.6%)、工业(8.0%)、生物质燃烧(7.7%)、扬尘(6.5%)、燃煤(5.8%)、海盐(4.8%)和船舶(3.2%)。机动车和船舶等移动源、秸秆焚烧和烟花爆竹燃放等生物质燃烧源的贡献浓度在研究期间呈现下降趋势,体现了相关治理措施的管控效果。  相似文献   

16.
为了快速分析天津市区冬季以及重污染过程中PM2.5的化学组成特征及来源,本研究于2017年1月利用在线监测仪器快速采集了天津市区环境受体中PM2.5及其化学组分的小时数据,并通过PMF(positive matrix factorization,正定矩阵因子分解法)模型解析了天津市区2017年1月及重污染过程中PM2.5的主要贡献源类,分析了重污染过程中排放源的变化趋势.结果表明:2017年1月天津市区PM2.5浓度为6.0~449.0 μg·m-3,平均值为153.3 μg·m-3.NO3-、SO42-、NH4+是PM2.5中水溶性离子的主要组分,三者之和占水溶性离子总量的88.3%.NH4+与Cl-、NO3-、SO42-均表现出显著的正相关性(r=0.82,0.95,0.97;p<0.01).NO3-和SO42-r=0.90;p<0.01),Ca2+与Mg2+r=0.65;p<0.01)均表现出显著的相关性,说明它们分别具有较高的同源性.OC和EC也是PM2.5的重要组成部分,两者之和占PM2.5质量浓度的20.4%.重污染过程中,PM2.5及其主要离子的浓度显著的增加(p<0.01),并存在较高的二次离子生成.PMF解析结果表明,二次源类是天津市区2017年1月PM2.5的首要源类,分担率为38.1%,其次为机动车源(分担率为25.6%)、燃煤源(分担率17.1%)、扬尘(分担率10.1%)和生物质燃烧(分担率9.1%).重污染过程中,二次源是PM2.5的主要贡献源类,分担率达到39.3%;说明重污染期间存在显著的二次转化及二次粒子的积累过程.重污染发生演变过程中,二次源、机动车源和燃煤源对PM2.5贡献表现出显著增加的趋势,而扬尘和生物质燃烧的贡献则没有显著增加.  相似文献   

17.
During November-December 2010 aerosol scattering coefficients were monitored using a single-waved (525 nm) Nephelometer at a regional monitoring station in the central Pearl River Delta region and 24-hr fine particle (PM2.5) samples were also collected during the period using quartz filters for the analysis of major chemical components including organic carbon (OC), elemental carbon (EC), sulfate, nitrate and ammonium. In average, these five components accounted for about 85% of PM2.5 mass and contributed 42% (OC), 19% (SO42-), 12% (NO3-), 8.4% (NH4+) and 3.7% (EC), to PM2.5 mass. A relatively higher mass scattering efficiency of 5.3 m2/g was obtained for fine particles based on the linear regression between scattering coefficients and PM2.5 mass concentrations. Chemical extinction budget based on IMPROVE approach revealed that ammonium sulfate, particulate organic matter, ammonium nitrate and EC in average contributed about 32%, 28%, 20% and 6% to the light extinction coefficients, respectively.  相似文献   

18.
邯郸市PM_(2.5)中水溶性无机离子污染特征及来源解析   总被引:3,自引:1,他引:3  
本研究通过对邯郸市环境空气中PM2.5样本进行采集和成分检测,分析了该地区PM2.5中水溶性无机离子的污染特征,并结合气象要素(风速、温度)、气态污染物(O3、NO2、SO2、CO)、SOR(硫氧化率)、NOR(氮氧化率)对其主要来源进行了解析.研究结果表明:总水溶性无机离子(TWSII)浓度季节变化特征明显,秋、冬季高于春、夏季.SO2-4、NO-3、NH+4是PM2.5中主要的水溶性无机离子,在TWSII中所占的比例为夏(93.2%)冬(85.6%)秋(85.5%)春(84.0%).春、夏、秋三季PM2.5呈酸性,冬季显碱性.此外还分析得到,SO2-4在四季中均以(NH4)2SO4的形式存在.NO-3在冬季以NH4NO3的形式存在,其余季节中以NH4NO3、HNO3等共存.绝大部分Cl-在冬季以NH4Cl的形式存在,其它季节中以NH4Cl、KCl等的形式存在.均相反应是SO2-4的主要生成途径,夏、冬季也伴随有非均相反应.NO-3的生成以均相反应为主(春、夏、秋),在冬季均相反应与非均相反应同时存在.应用因子分析法解析出4个主因子,其中,工业、燃煤、交通、生物质燃烧等综合源是PM2.5中水溶性无机离子的主要来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号