首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics and concentrations of volatile organic compounds (VOCs) in the roadside microenvironments of metropolitan Hong Kong were investigated. The VOC concentrations, especially toluene, benzene and chlorinated VOCs in Hong Kong were high when compared with those in most developed cities. The average and maximum concentration of toluene was 74.9 and 320.0 μg m−3, respectively. The respective values for benzene were 25.9 and 128.6 μg m−3. The chlorinated VOCs were dominated by trichloroethylene and tetrachloroethylene. The maximum concentrations of these two species reached 248.2 and 144.0 μg m−3, respectively. There were strong variations in the spatial fluctuation and characteristic of VOC concentrations. The highest VOC concentrations were found in the industrial district, which were followed by those in the commercial district, the central business district and finally the residential district. The highest concentrations of most VOC species, especially chlorinated VOC were found in the industrial and commercial districts. The average benzene/toluene ratio in Hong Kong was 0.5 suggesting that vehicular emission was the dominant VOC source in most areas of Hong Kong. There were strong deviations in benzene/toluene, benzene/ethylbenzene and benzene/(m+p-xylene) ratios in the commercial district, and highly chlorinated VOC in the industrial and commercial districts. These suggest that there were other benzene and VOC sources overlying on the high background VOC concentrations in these districts. The common usage of organic solvents in the building and construction industries, and in the small industries in the industrial and commercial districts were believed to be important sources of VOC in Hong Kong.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) and carbonyls compounds are becoming a major component of atmospheric toxic air pollutants (TAPs) in Hong Kong. Many studies in Hong Kong show that traffic emission is one of the most significant contributors in urban area of Hong Kong. A twelve months monitoring program for PAHs and carbonyl compounds started on 10 April 1999 including a two weeks intensive sampling in winter had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the monthly and seasonal variations of PAHs and carbonyl concentrations. The objective of this study is to characterize the roadside concentrations of selected TAPs (PAHs and carbonyl compounds) and to compare with the long-term compliance monitoring data acquired by Hong Kong Environmental Protection Department (EPD). Monthly variations, seasonal variations and winter/summer ratios at the monitoring station are discussed.  相似文献   

3.
The procedure of sampling and gas chromatographic-mass spectrometric analysis of air containing volatile emissions from living plants has been elaborated. The qualitative composition of volatile organic compounds (VOC) produced by 22 species of plants which are characteristic for Northern hemisphere forests has been studied. The emission rate of isoprene and terpenes for some of them has been determined. Terpene concentrations in coniferous forests of different regions of the U.S.S.R. have been also determined. The list of compounds identified includes more than 70 substances of different classes. Total terpene concentrations in the coniferous forests air usually vary from 3.5 to 35 μg−3. Strong influence of meteorological conditions on the emission rate and terpene concentrations in the air under the forest canopy has been noted.  相似文献   

4.
Mixing ratios of carbon monoxide (CO), methane (CH4), non-methane hydrocarbons, halocarbons and alkyl nitrates (a total of 72 species) were determined for 78 whole air samples collected during the winter of 1998–1999 in Karachi, Pakistan. This is the first time that volatile organic compound (VOC) levels in Karachi have been extensively characterized. The overall air quality of the urban environment was determined using air samples collected at six locations throughout Karachi. Methane (6.3 ppmv) and ethane (93 ppbv) levels in Karachi were found to be much higher than in other cities that have been studied. The very high CH4 levels highlight the importance of natural gas leakage in Karachi. The leakage of liquefied petroleum gas contributes to elevated propane and butane levels in Karachi, although the propane and butane burdens were lower than in other cities (e.g., Mexico City, Santiago). High levels of benzene (0.3–19 ppbv) also appear to be of concern in the Karachi urban area. Vehicular emissions were characterized using air samples collected along the busiest thoroughfare of the city (M.A. Jinnah Road). Emissions from vehicular exhaust were found to be the main source of many of the hydrocarbons reported here. Significant levels of isoprene (1.2 ppbv) were detected at the roadside, and vehicular exhaust is estimated to account for about 20% of the isoprene observed in Karachi. 1,2-Dichloroethane, a lead scavenger added to leaded fuel, was also emitted by cars. The photochemical production of ozone (O3) was calculated for CO and the various VOCs using the Maximum Incremental Reactivity (MIR) scale. Based on the MIR scale, the leading contributors to O3 production in Karachi are ethene, CO, propene, m-xylene and toluene.  相似文献   

5.
For the first time, polar and non-polar organic compounds from C4 to C20 have been identified and quantified in one urban and two saharan sites located in Algeria. They were collected on adsorption traps filled with graphitic carbons and analyzed by high-resolution gas chromatography–mass spectrometry after thermal desorption. More than 190 compounds released by man-made and biogenic sources or formed in air by degradation of photochemical smog precursors were identified in the city center of Algiers. Some of them were never reported before. During our determinations, high levels of pollution characterized the city. Transport of anthropogenic pollutants together with some biogenic emission from date palm trees was mainly responsible for the levels of VOCs measured in Melika oasis located at the entrance of the Sahara desert. Background tropospheric levels of VOCs were instead detected in Bouchene sandy site of the Sahara desert where no biogenic sources were present.  相似文献   

6.
Mohamed MF  Kang D  Aneja VP 《Chemosphere》2002,47(8):863-882
Volatile organic compounds (VOCs) have been determined to be human risk factors in urban environments, as well as primary contributors to the formation of photochemical oxidants. Ambient air quality measurements of 54 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in or near 13 urban locations in the United States during September 1996 to August 1997. Air samples were collected and analyzed in accordance with US Environmental Protection Agency-approved methods. The target compounds most commonly found were benzene, toluene, xylene and ethylbenzene. These aromatic compounds were highly correlated and proportionally related in a manner suggesting that the primary contributors were mobile sources in all the urban locations studied. Concentrations of total hydrocarbons ranged between 1.39 and 11.93 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations, and no single factor seemed to explain trends for this group of compounds. The highest halogenated hydrocarbon concentrations ranged from 0.24 ppbv for methylene chloride to 1.22 ppbv for chloromethane. At participating urban locations for the year of data considered, levels of carbonyls were higher than the level of the other organic compound groups, suggesting that emissions from motor vehicles and photochemical reactions strongly influence ambient air concentrations of carbonyls. Of the most prevalent carbonyls, formaldehyde and acetaldehyde were the dominant compounds, ranging from 1.5-7.4 ppbv for formaldehyde, to 0.8-2.7 ppbv for acetaldehyde.  相似文献   

7.
The concentrations of C1–C8 carbonyl compounds were measured at two urban sites in Hong Kong from October 1997 to September 2000. The daily total carbonyl concentrations were found to range from 2.4 to 37 μg m−3. Formaldehyde was the most abundant species, which comprised from 36 to 43% of the total detected carbonyls, followed by acetaldehyde (18–21%) and acetone (8–20%). The highest 24-hour average concentrations measured were 10 and 7.7 μg m−3 for formaldehyde and acetaldehyde, respectively. Seasonal and temporal variations in the concentrations of formaldehyde and acetaldehyde were not obvious, but lowest concentrations often occurred from June to August. The mean formaldehyde/acetaldehyde molar ratios at the two sites in summer (2.8±1.1 and 2.5±1.2) were significantly higher (p⩽0.01) than those in winter periods (1.9±0.6 and 2.0±0.6). The phenomena were explained by influences of both photochemical reactions and local meteorological conditions. Better correlations between formaldehyde and acetaldehyde, and between NOx and each of the two major carbonyls were obtained in winter periods indicating direct vehicular emissions were the principal sources. The ambient formaldehyde and acetaldehyde concentrations in the urban atmosphere of Hong Kong were within the normal ranges reported in the literature for other urban sites world-wide.  相似文献   

8.
There are a number of difficulties associated with the quantitative analysis of volatile organic compounds (VOCs) in atmospheric particles. Therefore, majority of the previous studies on VOCs associated with particles have been qualitative. Air samples were collected in Izmir, Turkey to determine ambient particle and gas phase concentrations of several aromatic, oxygenated and halogenated VOCs. Samples were quantitatively analyzed using thermal desorption–gas chromatography/mass spectrometry. Gas-phase concentrations ranged between 0.02 (bromoform) and 4.65 μg m−3 (toluene) and were similar to those previously measured at the same site. Particle-phase concentrations ranged from 1 (1,3-dichlorobenzene) to 933 pg m−3 (butanol). VOCs were mostly found in gas-phase (99.9±0.25%). However, the particulate VOCs had comparable concentrations to those reported previously for semivolatile organic compounds. The distribution of particle-phase VOCs between fine (dp<2.5 μm) and coarse (2.5 μm<dp<10 μm) fractions was also investigated. It was found that VOCs were mostly associated with fine particles.  相似文献   

9.
This study investigates the occurrence of carbonyl compounds in rainwater at the city of Thessaloniki, Northern Greece. The concentrations of carbonyl compounds (as sum of 14 compounds) ranged from 21.8 to 592 μg/L, mean concentration 119 μg/L. Formaldehyde, acetaldehyde, hexanal, glyoxal, and methylglyoxal were the dominant compounds. DOC concentrations in rainwater ranged from 0.46 to 21.3 mg/L. UV–Vis and fluorescence spectra characteristics showed variation among rain events. Carbonyl compounds were negatively correlated with temperature exhibited relatively higher concentrations in cold season. They also influenced by storm origin with higher concentrations under terrestrial air masses. Calm conditions enhance the concentrations of DOC. Wash out is an effective removal mechanism of DOC.  相似文献   

10.
We present measurements of C1–C8 volatile organic compounds (VOCs) at four sites ranging from urban to rural areas in Hong Kong from September 2002 to August 2003. A total of 248 ambient VOC samples were collected. As expected, the urban and sub-urban sites generally gave relatively high VOC levels. In contrast, the average VOC levels were the lowest in the rural area. In general, higher mixing ratios were observed during winter/spring and lower levels during summer/fall because of seasonal variations of meteorological conditions. A variation of the air mass composition from urban to rural sites was observed. High ratios of ethyne/CO (5.6 pptv/ppbv) and propane/ethane (0.50 pptv/pptv) at the rural site suggested that the air masses over the territory were relatively fresh as compared to other remote regions. The principal component analysis (PCA) with absolute principal component scores (APCS) technique was applied to the VOC data in order to identify and quantify pollution sources at different sites. These results indicated that vehicular emissions made a significant contribution to ambient non-methane VOCs (NMVOCs) levels in urban areas (65±36%) and in sub-urban areas (50±28% and 53±41%). Other sources such as petrol evaporation, industrial emissions and solvent usage also played important roles in the VOC emissions. At the rural site, almost half of the measured total NMVOCs were due to combustion sources (vehicular and/or biomass/biofuel burning). Petrol evaporation, solvent usage, industrial and biogenic emissions also contributed to the atmospheric NMVOCs. The source apportionment results revealed a strong impact of anthropogenic VOCs to the atmosphere of Hong Kong in both urban/sub-urban and rural areas.  相似文献   

11.
Forty native Mediterranean plant species were screened for emissions of the C5 and C10 hydrocarbons, isoprene and monoterpenes, in five different habitats. A total of 32 compounds were observed in the emissions from these plants. The number of compounds emitted by different plant species varied from 19 (Quercus ilex) to a single compound emission, usually of isoprene. Emission rates were normalised to generate emission factors for each plant species for each sampling event at standard conditions of temperature and light intensity. Plant species were categorised according to their main emitted compound, the major groups being isoprene, α-pinene, linalool, and limonene emitters. Estimates of habitat fluxes for each emitted compound were derived from the contributing plant species’ emission factors, biomass and ground cover. Emissions of individual compounds ranged from 0.002 to 505 g ha−1 h−1 (camphene from garrigue in Spain in autumn and isoprene from riverside habitats in Spain in late spring; respectively). Emissions of isoprene ranged from 0.3 to 505 g ha−1 h−1 (macchia in Italy in late spring and autumn; and riverside in Spain in late spring; respectively) and α-pinene emissions ranged from 0.51 to 52.92 g ha−1 h−1 (garrigue in Spain in late spring; and forest in France in autumn; respectively). Habitat fluxes of most compounds in autumn were greater than in late spring, dominated by emissions from Quercus ilex, Genista scorpius and Quercus pubescens. This study contributes to regional emission inventories and will be of use to tropospheric chemical modellers.  相似文献   

12.
The levels and distribution of 55 volatile organic compounds (VOCs) were determined by purge and trap GC-MS on water samples from 30 sites within the urban rivers and estuaries of Osaka, a populated industrialized city of Japan. Forty of 55 target VOCs listed in the US EPA Method 524.2 were detected. Dichloromethane (DCM) was found at higher levels at all of the sampling sites. The distribution of dominant VOCs followed four different patterns. First, the most common VOCs (DCM, toluene, trichloroethene and tetrachloroethene) showed concentration maxima in the river segments, and the sites of maximum concentration fluctuated due to irregular large spills and/or loadings. Second, one VOC (cis-1,2-dichloroethene) was evenly distributed in particular rivers due to fixed loadings. Both of these patterns were found in the upper and middle reaches. Third, some of VOCs (1,2,3-trichloropropane and benzene) were specific to a single industrial site and truceable to those sources. Finally, some VOCs showed no concentration maxima along the rivers and entered from multiple sources (chloroform and bromodichloromethane). Diurnal variations of VOCs at the border of the city area, receiving domestic and industrial discharges, provided information to interpret their observed downstream distribution and possible sources.  相似文献   

13.
The emission rate of particle-phase petroleum biomarkers in vehicular exhaust compared to the concentrations of these biomarkers in ambient air is used to determine the particulate organic compound concentration due to primary particle emissions from motor vehicles in the southern California atmosphere. A material balance on the organic particulate matter emitted from motor vehicle traffic in a Los Angeles highway tunnel first is constructed to show the proportion which is solvent-extractable and which will elute from a GC column, the ratio of resolved to unresolved compound mass, the portion of the resolved material that can be identified as single organic compounds, and the contribution of different classes of organic compounds to the overall identified fraction. It is shown that the outdoor ambient concentrations of the petroleum biomarkers track primary emissions measured in the highway tunnel, confirming that direct emissions of these compounds from vehicles govern the observed ambient petroleum biomarker concentrations. Using organic chemical tracer techniques, the portion of fine organic particulate matter in the Los Angeles atmosphere which is attributable to direct particle emissions from vehicle exhaust is calculated to vary from 7.5 to 18.3% at different sites throughout the air basin during a summertime severe photochemical smog episode. A similar level of variation in the contribution of primary motor vehicle exhaust to fine particulate organic matter concentrations during different times of day is seen. While peak atmospheric concentrations of fine particulate organic carbon are observed during the 1200–1600 PDT afternoon sampling period, only 6.3% of that material is apportioned to the directly emitted particles from vehicle exhaust. During the morning traffic peak between 0600–1000 PDT, 19.1% of the fine particulate organic material is traced to primary emissions from motor vehicles.  相似文献   

14.
Information of volatile organic compounds (VOCs) in buildings in Hong Kong is relatively scared compared to other countries. Information of how much VOC accumulation comes from occupants themselves, from building materials and other outdoor sources are scarce even on a global basis. This study aimed at collecting information of the levels of individual VOCs using US-EPA Method TO-14. Twenty building premises including offices and public places such as customer service centers, shopping centers, etc. were studied. Samples were taken during the time slots when the mechanical ventilation system was operating. The 43 VOCs were grouped into three categories, i.e. aromatic hydrocarbons, chlorinated hydrocarbons and organohalogen. The most dominant VOCs found in the indoor samples were benzene, toluene, ethylbenzene, xylenes (BETX), chloroform and trichloroethylene as 100% of the samples were found to contain these VOCs. Besides, more than 75% of the samples were found to contain 1,3,5-trimethylbenzene, methylchloride and dichloromethane. The wt% of chlorinated hydrocarbons (48%) and the wt% of aromatic hydrocarbons (38%) only differed by about 10% in the office sector. Organohalogen (14%) contributed to the smallest fraction of the total on all the premises in the office sector on weight basis. A completely different distribution pattern was found in the non-office sector. The most abundant class of VOCs in terms of weight was aromatic hydrocarbons (80%). The second abundant class of VOCs was chlorinated hydrocarbons (14%) and was much less than the level of aromatic hydrocarbons in terms of weight. Organohalogen (6%) contributed to the smallest fraction of the total on all the premises in the non-office sector on weight basis.  相似文献   

15.
Volatile organic compounds in selected micro-environments   总被引:1,自引:0,他引:1  
A program of sampling for volatile organic compounds (VOCs) in ambient air was undertaken in selected locations and micro-environments in Perth, Western Australia to characterise concentrations of target VOCs and to determine the relative strength of the contributing sources to ambient air in different micro-environments in a major Australian city. Twenty-seven locations were sampled and, of the forty-one target compounds, 26 VOCs were detected in the samples collected. The highest concentrations were recorded for benzene, toluene, ethylbenzene, xylenes (BTEX), chloroform and styrene. The maximum 12-h toluene and benzene concentrations observed were from a basement carpark and were 24.7 parts per billion (ppb) and 5.6 ppb, respectively. The maximum xylenes concentration was 29.4 ppb and occurred in a nightclub where styrene was also detected. A factor analysis of the data was undertaken. Two key factors emerge that appear to be associated with petroleum and motor vehicles and environmental tobacco smoke. A third significant occurrence was a high concentration of chloroform that was observed at a sports centre complex with a swimming pool text and was uncorrelated with other compounds in the data set. This study indicates that locations associated with motor vehicles and petrol fuel, tobacco and wood smoke and chlorinated water represent the major risks for personal exposure to VOCs in Perth.  相似文献   

16.
为了解上海城郊大气中挥发性有机物(VOCs)的时空污染特征及其对人体潜在健康风险,选取上海某城郊10个点位进行连续6年(2012—2017年)的采样分析。结果表明,上海该城郊大气VOCs平均质量浓度为(243.80±151.52)μg/m3,其中烷烃、卤代烃、芳香烃、含氧VOCs和不饱和脂肪烃依次占VOCs总浓度的45.72%、20.04%、18.84%、11.19%、4.21%。上海郊区不同功能区VOCs总浓度年际变化趋势较为一致,总体呈下降趋势;在空间上,化工区主干道路附近的两采样点VOCs质量浓度最高,分别为307.81、340.97μg/m~3。O3生成潜势和等效丙烯浓度计算结果显示,芳香烃为上海城郊大气中最主要的活性物种,且关键活性组分为甲苯、间/对-二甲苯和异丁烷等。上海城郊大气中27种风险VOCs的总致癌风险值为3.02×10~(-4),高于可接受限值(1.00×10~(-4)),长期暴露可能有致癌风险。  相似文献   

17.
Environmental Science and Pollution Research - The current scenario of increased population and industrial advancement leads to the spoliation of freshwater and tapper of the quality of water....  相似文献   

18.
The results of a 12-month study of more than 100 solvent extractable organic compounds (SEOC) in particulate matter (PM) less than or equal to 2.5 microm (PM2.5) collected at three air monitoring stations located at roadside, urban, and rural sites in Hong Kong are reported. The total yield of SEOC that accounts for approximately 8-18% of organic carbon (OC) determined by a thermal optical transmittance method was 125-2060 ng/m3, which included 14.6-128 ng/m3 resolved aliphatic hydrocarbons, 39.4-1380 ng/m3 unresolved complex mixtures, 0.6-17.2 ng/m3 polycyclic aromatic hydrocarbons, 41.6-520 ng/m3 fatty acids, and < 0.1-12.1 ng/m3 alkanols. Distinct seasonal variations (summer/winter differences) were observed with higher concentrations of the total and each class of SEOC in the winter and lower concentrations in the summer. Spatial variations are also obvious, with the roadside samples having the highest concentrations of SEOC and the rural samples having the lowest concentrations in all seasons. Characteristic ratios of petroleum hydrocarbons, such as carbon preference index, unresolved to resolved components, and carbon number with maximum concentration, suggest that PM2.5 carbon in Hong Kong originates from both biogenic and anthropogenic sources. The proportion of SEOC in PM2.5 from anthropogenic sources is estimated.  相似文献   

19.
Isidorov V  Jdanova M 《Chemosphere》2002,48(9):975-979
Qualitative composition of volatile emissions of litter of five species of deciduous trees was investigated by GC-MS. The list of identified substances contains more than 70 organic compounds of various classes. It was established that the composition of components emitted by the litter into the gas phase greatly differs from that of essential oils extracted by hydrodistillation from turned leaves collected from trees during fall. It is suggested that most compounds found in litter emissions are products of vital activity of microorganisms decomposing it. The reported data indicate that after the vegetative period is over the decomposition processes of litter are important seasonal sources of reactive organic compounds under the forest canopy.  相似文献   

20.
With the rapid urbanization, the southeast coastal cities of China are facing increasing air pollution in the past decades. Large emissions of VOCs from vehicles and petrochemical factories have contributed greatly to the local air quality deterioration. Investigating the pollution characteristics of VOCs is of great significance to the environmental risk assessment and air quality improvement. Ambient VOC samples were collected simultaneously from nine coastal cities of southeast China using the Tedlar bags, and were subsequently preprocessed and analyzed using a cryogenic preconcentrator and a gas chromatography–mass spectrometry system, respectively. VOC compositions, spatial distributions, seasonal variations and ozone formation potentials (OPFs) were discussed. Results showed that methylene chloride, toluene, isopropyl alcohol and n-hexane were most abundant species, and oxygenated compounds, aromatics and halogenated hydrocarbons were most abundant chemical classes (62.5–95.6 % of TVOCs). Both industrial and vehicular exhausts might contribute greatly to the VOC emissions. The VOC levels in the southeast coastal cities of China were sufficiently high (e.g., 6.5 μg?m?3 for benzene) to pose a health risk to local people. A more serious pollution state was found in the southern cities of the study region, while higher VOC levels were usually observed in winter. The B/T ratio (0.26?±?0.09) was lower than the typical ratio (ca. 0.6) for roadside samples, while the B/E (1.6–7.6) and T/E (7.2–26.8) ratios were higher than other cities around the world, which indicated a unique emission profile in the study region. Besides, analysis on ozone formation potentials (OFPs) indicated that toluene was the most important species in ozone production with the accountabilities for total OFPs of 22.6 to 59.6 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号