首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
不同粒径大气颗粒物中多环芳烃的含量及分布特征   总被引:18,自引:3,他引:18  
采集了北京城乡结合部与郊区2003年4个季节的不同粒径大气颗粒物样品 ,运用GC/MS分析了其多环芳烃组成 .结果表明 ,17种PAHs总量为 0.84~15.223ng/m3,城乡结合部含量是郊区的1.07~6.60倍 .PAHs总量的季节性变化表现为冬季>秋季>春季>夏季,且随颗粒物粒径减小,含量逐渐增大,大约有68.4%~84.7%的PAHs吸附在≤2.0μm颗粒上.2~3环PAHs呈双峰型分布,4~6环PAHs呈单峰型分布 ,PAHs分子量越大 ,MMD值越小 ,燃煤取暖与低温是导致冬季PAHs污染增高的主要因素.  相似文献   

2.
2016年5月和8月对辽东湾大气环境中气相和颗粒相样品进行了走航和定点采集,并对24种PAHs在气相和颗粒相中的含量和组成进行探讨,对15种PAHs的气粒分配过程进行了分析.结果表明:5月和8月辽东湾大气气相和颗粒相中∑24PAHs总平均含量分别为28.8 ng·m-3和24.0 ng·m-3,气相中∑24PAHs含量5月小于8月,颗粒态∑24PAHs含量5月大于8月,低分子量PAHs主要分布在气相中,高分子量PAHs组分主要分布在颗粒相,中等分子量PAHs的气粒分配更容易受到气温等环境条件影响;气粒分配系数Kp随着PAHs分子量增加而增加;lgKp-lgPL模型和lgKp-lgKOA模型的斜率m分别为-0.35和0.37,偏离平衡态m为-1或+1,辽东湾气粒分配未达到平衡;假设达到平衡态时的lgKp-lgKOA模型、lgKp-lgPL模型和碳黑-空气模型均表明,5环PAHs的模型预测结果与实际测定结果之间的吻合程度较好,15种PAHs的碳黑-空气模型能够更好地接近野外实际测定值,低分子量和中等分子量PAHs的气粒分配受到碳黑影响较大.  相似文献   

3.
南京大气中多环芳烃的相分布   总被引:3,自引:0,他引:3  
采用玻璃纤维滤膜(GF)和聚氨基甲酸乙酯泡膜(PUF)同时采集南京大气中颗粒态和气态上的多环芳烃(PAHs),用气质联用仪分析了16种优先控制的PAHs,研究了PAHs在南京大气中的相分布,研究结果表明,颗粒态和气态样品中16种PAHs的平均浓度值分别为20.49ng/m3和182.45ng/m3,2~3环的PAHs主要分布在气态中,而>4环的PAHs主要分布在颗粒态中。  相似文献   

4.
多环芳烃(PAHs)在大气中的相分布   总被引:37,自引:7,他引:37  
通过对广州市老城区空气中多环芳烃的研究表明 ,该区多环芳烃的污染相当严重 ,不同季节测定的多环芳烃总量差别不大 ,但颗粒相多环芳烃在春季占的比例 (44 8% )要高于夏季 (9 4 % ) .气相中主要以芴、菲、甲基菲、荧蒽、芘等低环数的多环芳烃为主 ,而高于四环的多环芳烃主要是分布在颗粒相中 ,苯并 (ghi)是最主要的颗粒相多环芳烃物质 .  相似文献   

5.
大气中多环芳烃气/粒分配的不确定性分析   总被引:2,自引:2,他引:0  
于2010年8月10~14日用双层石英膜和双层聚氨酯泡沫(PUF)的方法采集并分析了厦门大学海洋楼顶大气中气态和颗粒态多环芳烃(PAHs),并采用标准误差传递方法对气/粒分配系数(Kp)的不确定度进行了分析.测量结果显示,低分子量PAHs如萘、 苊、 二氢苊和芴在PUF吸附体系中的穿透能力最强,穿透率接近50%;如考虑第一层石英滤膜对气态萘、 苊和二氢苊的吸附影响,则校正后的Kp值比校正前相应的Kp值低1个数量级以上.采用标准误差传递方法得到PAHs气/粒分配系数Kp的不确定度,介于28.14%~50.37%之间,且表现为易挥发和难挥发性PAHs的Kp值皆具有较高的不确定度,而半挥发性PAHs的Kp值的不确定度则较小.Kp值的不确定度来源分析显示,气态PAHs浓度的不确定度的影响最大(方差贡献均值=77.9%),其次为颗粒态PAHs浓度的不确定度(方差贡献均值=22.0%),大气颗粒物浓度的不确定度影响最小(方差贡献均值=0.1%).因此,选择合适的采样系统以获取更加准确的气态PAHs的浓度,是提高PAHs气/粒分配系数准确度的关键.  相似文献   

6.
本文报导了大气颗粒物中多环芳烃的一种测定方法和结果。颗粒物预处理方法是:超声萃取,抽滤,减压蒸发浓缩,硅胶柱净化,再浓缩,定容溶解。用高效液相色谱法分离和鉴定。对西南石油学院5个功能区冬季大气颗粒物中的苯并(a)芘等9种多环芳烃的分布状况进行了实测,苯并(a)芘平均含量为26ng/m~3,为国外一些大城市冬季值的三倍,为国内一些大城市冬季污染值的二分之一。  相似文献   

7.
哈尔滨市大气中多环芳烃的初步研究   总被引:4,自引:1,他引:4       下载免费PDF全文
利用改进型的大流量主动采样器,于2008年5月7~20日对哈尔滨市大气样品进行采集,并检测了气相和颗粒相中的多环芳烃(PAHs)的浓度.结果表明,哈尔滨市大气中总PAHs的浓度为8.1~37.2ng/m3,平均值为18.2ng/m3.通过特征分子比值法推断出哈尔滨市大气中PAHs主要来自于煤的燃烧.低环PAHs主要集中在气相,而高环PAHs则吸附在颗粒相上.气粒分配系数与过冷饱和蒸气压具有很好的相关性,但PAHs并没有达到气粒分配平衡,这可能与冬季取暖用煤燃烧产生的新多环芳烃有关.  相似文献   

8.
多环芳烃在西江高要段水体中的分布与分配   总被引:5,自引:2,他引:3  
邓红梅  陈永亨  常向阳 《环境科学》2009,30(11):3276-3282
为了解西江流域水体中多环芳烃(PAHs)的深度和季节分布及其在溶解相和颗粒相的分配以及控制因素,分别在洪水期(2003年8月和2004年7月)和枯水期(2003年11月和2004年3月)采集了西江高要段水柱.结果表明,溶解相和颗粒相中PAHs的浓度分别为21.7~138 ng/L和40.9~664.8μg/kg;水体中PAHs的总含量(颗粒相及溶解相),洪水期大于枯水期.在溶解相中,PAHs的浓度随深度无明显规律;而在颗粒物中,PAHs的浓度都表现出相同的变化趋势,即中层水PAHs含量最高,表层水PAHs含量最低.溶解相和颗粒相中PAHs的浓度都随悬浮颗粒物的含量增加而增加.从PAHs组成特点来看,溶解相以3环的PAHs为主,而颗粒相以3~4环的PAHs为主.PAHs在颗粒相及溶解相中的分配系数(KP)不受颗粒有机碳浓度控制(R2为0.000 1~0.2),而受颗粒物浓度、及溶解有机碳浓度的共同影响(R2为0.15~0.36),尤其是溶解态的细小碳黑有机质的影响.西江高要段水体PAHs在不同季节的lgKOC值大部分超过经典平衡分配模型的上限.除了2003年11月(R2为0.000 4~0.12,p0.001)之外,其它3个季节PAHs的lgKOC与lgKOW均有较强的相关性(R2为0.29~0.91,p0.05).洪水期颗粒物的亲脂性强于枯水期.  相似文献   

9.
南京北郊雾天PM10中多环芳烃粒径分布特征   总被引:2,自引:3,他引:2  
为研究雾天PM10中多环芳烃粒径分布特征,2007-11-15~2007-12-30在南京北郊进行了PM10分8级粒径多环芳烃(PAHs)成分连续样品采集,由同步气象观测资料选出雾天与晴天样本作为对比,用GC-MS分析其中16种PAHs含量.雾天夜间PM2.1和PM9.0平均质量浓度为120.34μg.m-3和215.92μg.m-3,接近白天PM2.1(126.76μg.m-3)和PM9.0(213.41μg.m-3),昼、夜基本没有变化;晴天夜间PM2.1和PM9.0平均质量浓度为71.45μg.m-3和114.33μg.m-3,高于白天PM2.1(41.02μg.m-3)和PM9.0(74.38μg.m-3),昼、夜变化很明显;雾天PM2.1∑16PAHs为49.97 ng.m-3,是晴天(33.30 ng.m-3)1.50倍,PM9.0∑16PAHs为59.45 ng.m-3,是晴天(40.80 ng.m-3)1.46倍;PM2.1和PM9.0中PAHs单体平均浓度均为荧蒽最高,且雾天(PM2.1为7.98 ng.m-3,PM9.0为9.99 ng.m-3)高于晴天(PM2.1为5.23 ng.m-3,PM9.0为6.77 ng.m-3);雾天PM2.1和PM9.0中苯并[a]芘的浓度为1.77ng.m-3和1.99 ng.m-3,高于晴天(PM2.1为1.46 ng.m-3,PM9.0为1.84 ng.m-3).结果表明,雾过程加重了近地面大气PM2.5和PM10的污染;雾天与晴天PM10∑16PAHs粒径分布的昼夜特征与PM10在2种天气系统下粒径分布的昼夜特征基本一致,均为双峰型分布,分别位于积聚模态和粗模态粒子.白天雾过程对PM10及PM10∑16PAHs的粒径分布影响比较大,夜间雾过程则对其没有太大影响.  相似文献   

10.
北京地区大气颗粒物中硝基多环芳烃与多环芳烃的研究   总被引:9,自引:0,他引:9  
提出了一套包括提取、还原、分离及同时测定硝基多环芳烃及多环芳烃的分析方法.通过对北京几个不同功能区所采样品的分析及Ames短期生物实验,进一步肯定北京大气颗粒物中不仅含有致突变物和致癌物多环芳烃,还含有直接致突变物硝基多环芳烃,这两类化合物在大气颗粒物中的含量均呈现“冬高夏低’的规律,它们在商业区,居民区的污染更为严重.  相似文献   

11.
广州灰霾期大气颗粒物中多环芳烃粒径的分布   总被引:32,自引:0,他引:32       下载免费PDF全文
对2003年广州严重灰霾期前后9d的大气样品进行了分析.结果表明,大气中颗粒物在积聚态颗粒物(0.32~1.80μm)和粗颗粒物(3.2~10.0μm)处有2个明显的峰;灰霾期积聚态颗粒物比粗颗粒物在TSP中占的比例高,而在灰霾结束后所占比例与粗颗粒物相当或略少;低环数多环芳烃在积聚态颗粒物段和粗颗粒物段各有一个峰,但主要分布在积聚态颗粒物中;高环数多环芳烃几乎完全分布在积聚态颗粒物中;从灰霾期至灰霾期后,低环数多环芳烃在积聚态颗粒物段的主峰粒径有逐渐减少的趋势,而对于高环数多环芳烃这一变化不大;比值TPAHs/TSP在灰霾期前后有较大的变化;由于比值BaP/BeP与TPAHs/TSP具有相同的变化趋势,降解作用可能是造成比值TPAHs/TSP变化的主要原因.  相似文献   

12.
研究了长江攀枝花、宜宾、泸州、重庆、涪陵、三峡、岳阳、武汉、九江和南京共计10个重点江段枯水期和丰水期表层水中19种多环芳烃(PAHs)及其15种衍生物(SPAHs)的分布和来源,评估了长江PAHs类污染的健康风险及时空差异.结果表明,长江表层水中∑PAHs、∑SPAHs平均浓度分别为(147.3±59.8)、(73.2±29.7) ng·L-1,检出率分别为82.9%、69.5%,其中2~3环(S)PAHs所占比例为79%.在SPAHs中,∑NPAHs(硝基取代PAHs)、∑MPAHs(甲基取代PAHs)、∑OPAHs(氧化PAHs)的平均浓度分别为(27.0±4.5)、(24.7±15.5)、(17.1±11.9) ng·L-1.根据分子比值法及主成分分析可知,长江重点江段PAHs主要来源于生物质、化石及液体燃料燃烧,SPAHs主要来源于燃烧源和光化学转化,SPAHs及PAHs通过大气沉降汇入水体.采用毒性当量因子浓度计算对长江重点江段PAHs进行健康风险评估,结果表明在枯水期具有致癌性PAHs的∑TEQBaP值(苯并芘毒性当量)较高,其中岳阳、武汉江段的BaP毒性当量浓度高于我国地表水规定阈值,应当高度重视长江流域PAHs在枯水期引起的健康风险.  相似文献   

13.
李海燕  段丹丹  黄文  冉勇 《环境科学学报》2014,34(12):2963-2972
分别于2011年4月(春季)和2011年9月(夏季)采集珠江广州河段及东江东莞河段表层水体样品,对该区域表层水体中优控多环芳烃(PAHs)的时空分布、固液分配及其来源进行了分析和讨论.结果表明,珠江广州河段及东江东莞河段表层水体中多环芳烃浓度春季高于夏季.藻类有机碳是该水环境有机碳的主要成分.溶解有机碳(DOC)、颗粒态有机碳(POC)以及叶绿素a(Chl a)含量是控制水体PAHs浓度的主要因素,说明水环境的富营养化程度可以通过增长的浮游生物量来影响多环芳烃的生物地球化学过程,继而影响其环境行为和归宿.多环芳烃在水/颗粒物间的有机碳归一化分配系数(log Koc)与辛醇/水分配系数(log Kow)间存在明显的线性关系,其斜率是夏季大于春季,可能与多环芳烃的非平衡吸附有关.多环芳烃同系物比值法和主成分分析(PCA)的结果表明,研究区域水体中PAHs主要来源于石化燃料、煤和生物质的混合燃烧,并且PAHs的来源未体现出明显的季节变化.通过本研究我们能够比较全面的了解该流域多环芳烃的时空分布状况,固液分配及其可能的来源,并且为珠江广州河段及东江东莞河段多环芳烃污染的控制和生态风险评价提供科学依据.  相似文献   

14.
潘苏红  林田  李军  张干  刘向 《中国环境科学》2010,30(8):1021-1025
为探讨广州和香港市区玻璃表面薄膜上有机质和PAHs的分布特征,从2007年12月至2008年1月,利用低尘擦拭纸采集广州和香港室内外相对应的15对玻璃表面薄膜样品.结果表明,广州室内外有机质占表面薄膜重量的1.8%和1.1%,香港则分别为3.9%和1.6%.玻璃表面薄膜上Σ15PAHs浓度的最高值达到1430ng/m2,以菲,芴,荧蒽,芘等为主.室内外对比结果显示,主要以颗粒态形式存在的5~6环化合物室内外差别较大,广州室外比室内大约高1倍,而香港由于中央通风系统的过滤作用,其室外比室内高约5~10倍.根据有机质和PAHs浓度之间的相关性,认为室内外存在不同源强的有机质和PAHs来源,玻璃表面可能更有利于PAHs的光降解.  相似文献   

15.
渤海湾潮滩不同粒径沉积物中多环芳烃的分布   总被引:1,自引:2,他引:1       下载免费PDF全文
利用湿筛分离的方法,将采自渤海湾潮间带的沉积物分成0.063mm 3个不同的粒径组分,测定其16种EPA规定的多环芳烃(PAHs)含量、总有机碳(TOC)和碳黑(BC)含量.结果表明,不同粒径沉积物中∑PAHs含量范围在714~4870ng/g之间.在岐口(TS3)沉积物中,∑PAHs含量最高值出现在0.063mm粒径组分中.所有站点沉积物的0.031~0.063mm粒径组分中∑PAHs含量均为最低.尽管如此,有机碳标准化∑PAHs含量则随着沉积物粒径的增大呈现增加趋势.不同粒径沉积物中∑PAHs含量与BC含量之间呈现显著正相关关系,而与有机碳(OC=TOC-BC)含量之间的相关性较差.因此,不同粒径沉积物中BC的分布很可能在其中扮演着更重要的作用.  相似文献   

16.
深圳市大气中多环芳烃的污染特征与来源识别   总被引:6,自引:1,他引:6       下载免费PDF全文
利用大流量主动采样器于2009年12月~2010年1月及2010年6月,分冬季与夏季两批次对深圳市13个点位进行大气样品采集,检测其气相及颗粒相中总的多环芳烃(PAHs)浓度.结果表明,冬季深圳市大气中总PAHs的浓度为17.9~92.3ng/m3,平均值为45.3ng/m3;夏季总PAHs浓度范围为8.64~96.3ng/m3,平均值为32.2ng/m3.两个季节PAHs单体中均以3~4环为主,占总浓度的75%以上;单个组分与总量的相关性分析表明,夏季明显优于冬季.来源分析表明,冬季大气中PAHs来源比夏季更为复杂,通过特征分子比值法推断冬季PAHs主要来源于石油源、燃煤、机动车尾气排放;夏季主要来源于机动车尾气排放.利用毒性当量因子法和致癌风险评价其污染水平和毒性风险,结果表明深圳市大气中PAHs污染与国内部分城市相比,处于较低水平.  相似文献   

17.
几种多环芳烃的植物吸收作用及其对根系分泌物的影响   总被引:6,自引:3,他引:6  
采用水培试验方法,以多年生黑麦草(Lolium multiflorum Lam.)为供试植物,研究了芘、菲、苊和萘的植物吸收作用及其对根系分泌物的影响.结果表明,黑麦草能明显吸收富集多环芳烃(PAHs);随培养液中PAHs浓度的升高,其在黑麦草根和茎叶中的含量增大,且根的PAHs含量、富集系数要远大于茎叶.芘、菲、苊、萘污染胁迫下,黑麦草根系分泌物中可溶性有机碳、草酸和可溶性总糖的含量均高于无污染对照.供试污染浓度范围内,随着培养液中菲、苊、萘浓度提高,可溶性有机碳、草酸及可溶性总糖的分泌量增大;但在芘胁迫下,与污染对照相比,分泌量的增加幅度随着芘浓度的升高则呈先增大后减小的趋势.在较低污染强度下,供试PAHs对根系分泌物的促分泌效应由强到弱依次为芘、菲、苊和萘.4种PAHs对可溶性糖类的促分泌作用最强,其分泌量的增加幅度明显大于可溶性有机碳和草酸.  相似文献   

18.
深圳大运会期间,利用大流量主动采样器对深圳市5个点位进行大气样品采集,检测其气相及颗粒相中总的多环芳烃(PAHs)浓度以及与2010年夏季的监测数据进行比较,研究PAHs通过各种空气质量保障措施实施后的消减情况.结果表明,大运期间5个点位∑PAHs变化范围为15.80~62.09ng/m3,平均值30.77ng/m3,与2010年夏季相比,PAHs平均消减28%;大运期间PAHs单体中均以3~4环为主,平均占总浓度的88%;通过特征分子比值法推断大运期间机动车尾气排放是PAHs的主要来源,但是柴油车尾气排放和燃煤电厂废气排放的贡献比率增加;大运期间∑BaPeq比2010年夏季降低36%,BaP浓度以及∑BaPeq浓度都低于我国环境空气中对BaP的限值标准;呼吸致癌风险评价表明,大运期间为每百万人致癌3.8例,2010年夏季为每百万人致癌7.3例,致癌风险下降48%.  相似文献   

19.
我国一些城市污泥中多环芳烃(PAHs)的研究   总被引:21,自引:1,他引:21  
应用GC/MS对我国内地和香港地区共11个城市污泥中的17种多环芳烃化合物(PAHs)进行了研究,各城市污泥中∑PAHs的含量在2.271-143.804mg/lg之间,依次为兰州污泥>珠海污泥>北京污泥>广州污泥>佛山污泥>无锡污泥>沙田污泥(香港)>元朗污泥(香港)>大埔污泥(香港)>西安污染>深圳污泥,含量较高的化合物主要是蒽、荧蒽、苯并(a)蒽和屈等,珠海污泥和北京污泥的苯并(a)芘含量超过我国城市污泥农用标准,各化合物的最高含量分别分布在兰州污泥、珠海污泥、北京污泥和广州污泥中,各城市污泥中的PAHs具有不同的分布特征,均以少数化合物为主,主要是3和4个苯环的化合物,2、5和6个苯环的化合物含量普遍较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号