首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A Bird Community Index of Biotic Integrity for the Mid-Atlantic Highlands   总被引:4,自引:0,他引:4  
We report on the development and preliminary application of a songbird community-based index of biotic integrity. The bird community index (BCI) sorts bird species found at sample sites into a series of values representing the proportional species richness of 20 behavioral and physiological response guilds. Relative proportions of specialist and generalist guilds are used to assign a composite score to each site. Scores from multiple sites indicate the overall biotic integrity of the study area. The BCI is intended to function as a landscape-scale indicator of biotic integrity, integrating conditions across large sample sites containing diverse ecological resources and intensities of human use. We developed the BCI with data from a 1994 pilot study in central Pennsylvania, then applied our preliminary index in 1995 and 1996 to independent samples of sites across the Mid-Atlantic Highlands Assessment area (MAHA). The 1995 and 1996 sample sites were selected using the probability-based sampling design of the Environmental Monitoring and Assessment Program (EMAP), and therefore represent the total land area in MAHA. Our preliminary assessment indicates that MAHA exhibits six categories of biotic integrity, and that more than 40% of the land area supports the two highest biotic integrity categories. Pending BCI refinement and incorporation of landscape and vegetation explanatory variables, the BCI will be included in a suite of indicators designed to provide an assessment of overall ecological condition in MAHA.  相似文献   

2.
Due to the complexity of factors that influence species density on a large geographical scale, the effectiveness of the species distribution model (SDM) is still debatable. That is why the buffer zone (the area within 100 m from the outside edge of the patch), the core, i.e. (patches excluding the 100 m buffer zone from the patch’s edge) and patch shape are explored in this study to see how they affect the density of habitat specialist and generalist bird species. Two sets of generalised additive models were generated separately for each of the four bird species: One set of models contained landscape configuration metrics as an additional predictor variable, and the other did not. The results showed that models including the core, the buffer zone and the shape of patches turned out to be definitely better than models without them. Specialist species, the Corn bunting and the Wood nuthatch, are more likely to occur in the core of the preferred patches, and they choose those of a simple shape; while generalist species, the Whinchat and the Tree pipit, are more probable to be present in the buffer zone of a more complicated shape. Thus, the results clearly show that specific landscape configuration models can improve the predictive power of SDMs and can be used as an effective tool for predicting species density and functional bird diversity (specialist and generalist). Furthermore, from the applied ecology perspective, detailed landscape configuration metrics can be considered as a surrogate of elusive habitat conditions.  相似文献   

3.
Scale is important to consider when investigating effects of the environment on a species. Breeding Bird Survey (BBS) data and landscape metrics derived from aerial photographs were evaluated to determine how relationships of bird abundances with landscape variables changed over a continuous range of 16 spatial scales. We analyzed the average number of birds per stop (1985–1994) for five songbird species (family Cardinalidae) for each of 50 stops on 198 BBS transects throughout six states in the Central Plains, USA. Land along each transect was categorized into six cover types, and landscape metrics of fractal dimension (a measure of shape complexity of habitat patches), edge density, patch density, and percent area were calculated, with principal components used to construct composite environmental variables. Associations of bird abundances and landscape variables changed in accordance with small scale changes. Abundances of three species were correlated with edge density and one with component I, which subsumes initial variables of patch density for urban, closed forest, open forest, and open country. Fractal dimension and component II (summarizing amount of closed forest versus open country) were associated with the most species. Correlation patterns of fractal dimension with northern cardinal (Cardinalis cardinalis) and painted bunting (Passerina ciris) abundances were similar, with highest correlations at intermediate to small scales, suggesting indirectly that these species thrive in areas where local habitat conditions are most important. Multiscale analysis can provide insight into the spatial scale(s) at which species respond, a topic of intrinsic scientific interest with applied implications for researchers establishing protocols to assess and monitor avian populations.  相似文献   

4.
Birds are important components of biodiversity conservation since they are capable of indicating changes in the general status of wildlife and of the countryside. The Pan-European Common Bird Monitoring Scheme (PECBM) has been launched by the BirdLife Partnership in Europe, where the European Bird Census Council has been collecting data from 20 independent breeding bird survey programs across Europe over the last 25 years. These data show dramatic declines in European farmland birds. We suggest that seasonal characteristics of vegetation cover derived from high temporal resolution remote sensing images could facilitate the monitoring the suitability of farmland bird habitats, and that these indicators may be a better choice for monitoring than climate data. We used redundancy analysis to link the PECBM data of the estimated number of farmland birds in Europe to a set of phenological and climatic indicators and to the biogeographic regions of Europe. Variance partitioning was used to account for the variation explained by the phenological and climate variables and by the area of the environmental strata individually, to define the pure effect of the variables, and to extract the total explained variance. The analysis revealed high statistical significance (p < 0.001) of the correlations between species and environment. Phenological indices explained 38% of the variance in community composition of the 23 farmland bird species, whereas climate explained 30% of the variance. After partitioning the other variables as covariables, the pure effect of phenology, climate, and environmental strata were 16%, 8%, and 16%, respectively. Based on the probability results, we suggest that phenological indicators derived from remote sensing may supply better indicators for continental scale biodiversity studies than climate only. In addition, these indicators are cost and time effective, are on continuous scale, and are readily repeatable on a large spatial coverage while supplying standardized results.  相似文献   

5.
The study evaluates the potential for bird species assemblages to serve as indicators of biological integrity of rangelands in the Great Basin in much the same way that fish and invertebrate assemblages have been used as indicators in aquatic environments. Our approach was to identify metrics of the bird community using relatively simple sampling methods that reflect the degree of rangeland degradation and are consistent over a variety of vegetation types and geographic areas. We conducted the study in three range types (i.e., potential natural plant community types) in each of two widely separated areas of the Great Basin: south-eastern Idaho (sagebrush steppe range types) and west-central Utah (salt-desert shrub range types). Sites were selected in each range type to represent three levels of grazing impact, and in Idaho included sites modified for crested wheatgrass production. Birds were sampled by point counts on 9 100-m radius plots at 250-m spacing on each of 20 sites in each area during the breeding season. In sagebrush-steppe, 964 individuals in 8 species of passerine birds were used in analyses. Five metrics were significantly related to impact class, both when analyzed within range type and when analyzed with all range types combined. Species richness, relative abundance of shrub obligate species, and relative abundance of Brewer's sparrow were generally lower for the higher impact classes, whereas the reverse was true for dominance by a single species and for relative abundance of horned larks. In contrast, total number of individuals did not differ significantly as a function of impact class. In salt-desert shrub, a total of 843 birds in 4 species were included in analyses, 98% of which were horned larks. None of the metrics identified above was significantly related to impact class. Two metrics for breeding birds in sagebrush steppe (species richness and dominance) showed little overlap between values for the extremes of impact class, and thus they have potential as indicators of biological integrity. However, the sensitivity of these metrics appears to be greatest at the high impact end of the spectrum, which suggests they may have limited utility in distinguishing between sites having light and moderate impact.  相似文献   

6.
We utilized landscape and breeding bird assemblage data from three Breeding Bird Survey (BBS) routes sampled from 1965–1995 to develop and test a grassland integrity index (GII) in a mixed-grass prairie area of Oklahoma. The overall study region is extensively fragmented from long-term agricultural activity, and native habitat remnants have been degraded by recent encroachment of woody vegetation, namely eastern redcedar (Juniperus virginiana L.). The 50 individual bird survey points along the BBS routes, known as stops, were used as sample sites. Our process first focused on developing a grassland disturbance index (GDI) as a measure of cumulative landscape disturbances for these sites. The GDI was based on five key landscape variables identified in an earlier species-level study of long-term avian community dynamics: total tree, shrub, and herbaceous vegetation cover indices, overall mean landscape patch size, and grassland patch core size. The GII was then developed based on breeding bird assemblage data. Assemblages were based on commonly used response guilds reflective of five avian life history parameters: foraging mode/location, nesting location, habitat specificity, migratory pattern, and dietary guild. We tested the response of 78 candidate assemblage metrics to the GDI, and eliminated those with no or poor response or with high correlations (redundant), resulting in 13 metrics for use in the final index. Individual metric scores were scaled to fall between 0 and 10, and the cumulative index to range from 0 to 100. Although broader application and refinement are possible, the avian-based GII has an advantage over labor-intensive, habitat-based monitoring in that the GII is derived from readily available long-term BBS data. Therefore, the GII shows promise as an inexpensive tool that could easily be applied over other areas to monitor changes in regional grassland conditions.  相似文献   

7.
Land use change—mostly habitat loss and fragmentation—has been recognized as one of the major drivers of biodiversity loss worldwide. According to the habitat amount hypothesis, these phenomena are mostly driven by the habitat area effect. As a result, species richness is a function of both the extent of suitable habitats and their availability in the surrounding landscape, irrespective of the dimension and isolation of patches of suitable habitat. In this context, we tested how the extent of natural areas, selected as proxies of suitable habitats for biodiversity, influences species richness in highly anthropogenic landscapes. We defined five circular sampling areas of 5 km radius, including both natural reserves and anthropogenic land uses, centred in five major industrial sites in France, Italy and Germany. We monitored different biodiversity indicators for both terrestrial and aquatic ecosystems, including breeding birds, diurnal butterflies, grassland vegetation, odonata, amphibians, aquatic plants and benthic diatoms. We studied the response of the different indicators to the extent of natural land uses in the sampling area (local effect) and in the surrounding landscape (landscape effect), identified as a peripheral ring encircling the sampling area. Results showed a positive response of five out of seven biodiversity indicators, with aquatic plants and odonata responding positively to the local effect, while birds, vegetation and diatoms showed a positive response to the landscape effect. Diatoms also showed a significant combined response to both effects. We conclude that surrounding landscapes act as important biodiversity sources, increasing the local biodiversity in highly anthropogenic contexts.  相似文献   

8.
The increasing cultivation of energy crops in Germany substantially affects the habitat function of agricultural landscapes. Precise ex ante evaluations regarding the impacts of this cultivation on farmland bird populations are rare. The objective of this paper was to implement a methodology to assess the regional impacts of increasing energy maize cultivation on the habitat quality of agricultural lands for farmland birds. We selected five farmland bird indicator species with varying habitat demands. Using a crop suitability modelling approach, we analysed the availability of potential habitat areas according to different land use scenarios for a real landscape in Northeast Germany. The model was based on crop architecture, cultivation period, and landscape preconditions. Our results showed that the habitat suitability of different crops varied between bird species, and scenario calculations revealed an increase and a decrease in the size of the potential breeding and feeding habitats, respectively. The effects observed in scenario 1 (increased energy maize by 15 %) were not reproduced in all cases in scenario 2 (increased energy maize by 30 %). Spatial aggregation of energy maize resulted in a negative effect for some species. Changes in the composition of the farmland bird communities, the negative effects on farmland bird species limited in distribution and spread and the relevance of the type of agricultural land use being replaced by energy crops are also discussed. In conclusion, we suggest a trade-off between biodiversity and energy targets by identifying biodiversity-friendly energy cropping systems.  相似文献   

9.
Introduced plant species have significant negative impacts in many ecosystems and are found in many forests around the world. Some factors linked to the distribution of introduced species include fragmentation and disturbance, native species richness, and climatic and physical conditions of the landscape. However, there are few data sources that enable the assessment of introduced species occupancy in native plant communities over broad regions. Vegetation data from 1,302 forest inventory plots across 24 states in northeastern and mid-western USA were used to examine and compare the distribution of introduced species in relation to forest fragmentation across ecological provinces and forest types, and to examine correlations between native and introduced species richness. There were 305 introduced species recorded, and 66 % of all forested plots had at least one introduced species. Forest edge plots had higher constancy and occupancy of introduced species than intact forest plots, but the differences varied significantly among ecological provinces and, to a lesser degree, forest types. Weak but significant positive correlations between native and introduced species richness were observed most often in intact forests. Rosa multiflora was the most common introduced species recorded across the region, but Hieracium aurantiacum and Epipactus helleborine were dominant in some ecological provinces. Identifying regions and forest types with high and low constancies and occupation by introduced species can help target forest stands where management actions will be the most effective. Identifying seemingly benign introduced species that are more prevalent than realized will help focus attention on newly emerging invasives.  相似文献   

10.
Facing the growing demand for renewable energy sources, the use of wind energy has been significantly increasing worldwide. Wind farms are known to present low environmental impact and their impact on bird fauna has been the most studied and discussed. In this study, we evaluated the composition of bird communities and changes in land use during three phases of wind farm development: pre-construction, construction and operation. Secondary data was obtained on bird communities, provided by the wildlife monitoring report submitted to the state environment agency of Rio Grande do Sul, Brazil. The total number of species recorded for all phases of wind farm construction was 163 species. One hundred species were present during all phases, and 20 were recorded during at least two phases, 32 species were exclusive to the pre-construction phase, four species were recorded only during the construction phase and seven recorded during the operation phase. The evaluation of bird community structure revealed that the pre-construction phase differed from the 4 years of operation, indicating that an impact on bird species' composition is evident, but more detailed and longer surveys are needed to confirm this trend. The bird community responded to landscape changes, mainly due to the reduction of native and exotic forest cover, in areas affected by wind farms installation and operation, in both, species' composition and environmental guilds. Analysis of secondary data allows us to evaluate which changes may have resulted from the implantation of the wind energy industry to the regional bird fauna, and our findings demonstrates tha the changes associated with the construction and operation of this wind farm have negatively affected the bird community.  相似文献   

11.
Lake Ontario and St. Lawrence River (LOSL) wetland bird abundance and diversity are greatly influenced by lake and river hydrology. Our study used an interdisciplinary ecosystem approach, blending avian and plant ecology, ecohydraulic, statistical ecology and modelling to evaluate potential impacts of water level fluctuations on indicator species representative of the wetland breeding bird assemblages in the entire LOSL freshwater system. Multi-year (2000–2003) bird surveys captured bird distribution and density in wetland habitats under varying degrees of water inandation, depth and fluctuation. Analyses revealed strong associations between estimated breeding pair densities and plant communities, water depth, and degree of water level fluctuation during the breeding season for a suite of wetland bird species using marsh, wet meadow, shrub swamp and treed swamp habitats. These quantitative associations were used to develop wetland bird performance indicators for use in a LOSL water regulation review study. Several bird species also nest at or near the water surface and are thus vulnerable to nest flooding or stranding. Changes to the seasonal hydrology of Lake Ontario and St. Lawrence River that result in an increased frequency or magnitude of these nest failure events may have a significant impact on regional population sustainability. Long term nest record databases were analyzed to create nesting flooding and stranding probability equations based on water level increases and decreases during the breeding season. These species-specific nesting relationships were incorporated into a reproduction index.Many breeding bird species were strongly associated with specific wetland plant communities. Predicted habitat suitability, as measured by estimated breeding pair density, can also change significantly within a specific wetland plant community based solely on changes in water depth during the breeding season. Three indicator species, Black Tern, Least Bittern and Virginia Rail were selected as key environmental performance indicators for alternate regulation plan comparisons.Water regulation criteria should be such that the long term diversity and abundance of wetland plant communities and frequency of spring flooding in marsh habitats during breeding are not reduced. Magnitude and frequency of water level change during the nesting season (May–July) can also adversely impact reproductive success of many wetland bird species. As such, regulation criteria that increase the seasonal magnitude and frequency of water level change may be detrimental to the long term viability of certain regional breeding bird populations.  相似文献   

12.
A majority of the research on forest fragmentation is primarily focused on animal groups rather than on tree communities because of the complex structural and functional behavior of the latter. In this study, we show that forest fragmentation provokes surprisingly rapid and profound alterations in tropical tree community. We examine forest fragments in the tropical region using high-resolution satellite imagery taken between 1973 and 2004 in the Southern Western Ghats (India) in relation to landscape patterns and phytosociological datasets. We have distinguished fragmentation in six categories—interior, perforated, edge, transitional, patch, and undetermined—around each forested pixel. Furthermore, we have characterized each of the fragment class in the evergreen and semi-evergreen forest in terms of its species composition and richness, its species similarity and abundance, and its regeneration status. Different landscape metrics have been used to infer patterns of land-use changes. Contiguous patches of >1,000 ha covered 90% of evergreen forest in 1973 with less porosity and minimal plantation and anthropogenic pressures; whereas in 2004, the area had 67% forest coverage and a high level of porosity, possibly due to Ochlandra spread and increased plantations which resulted in the loss of such contiguous patches. Results highlight the importance of landscape metrics in monitoring land-cover change over time. Our main conclusion was to develop an approach, which combines information regarding land cover, degree of fragmentation, and phytosociological inputs, to conserve and prioritize tropical ecosystems.  相似文献   

13.
We tested a previously described model to assess the wildlife habitat value of New England salt marshes by comparing modeled habitat values and scores with bird abundance and species richness at sixteen salt marshes in Narragansett Bay, Rhode Island USA. As a group, wildlife habitat value assessment scores for the marshes ranged from 307-509, or 31-67% of the maximum attainable score. We recorded 6 species of wading birds (Ardeidae; herons, egrets, and bitterns) at the sites during biweekly survey. Species richness (r (2)=0.24, F=4.53, p=0.05) and abundance (r (2)=0.26, F=5.00, p=0.04) of wading birds significantly increased with increasing assessment score. We optimized our assessment model for wading birds by using Akaike information criteria (AIC) to compare a series of models comprised of specific components and categories of our model that best reflect their habitat use. The model incorporating pre-classification, wading bird habitat categories, and natural land surrounding the sites was substantially supported by AIC analysis as the best model. The abundance of wading birds significantly increased with increasing assessment scores generated with the optimized model (r (2)=0.48, F=12.5, p=0.003), demonstrating that optimizing models can be helpful in improving the accuracy of the assessment for a given species or species assemblage. In addition to validating the assessment model, our results show that in spite of their urban setting our study marshes provide substantial wildlife habitat value. This suggests that even small wetlands in highly urbanized coastal settings can provide important wildlife habitat value if key habitat attributes (e.g., natural buffers, habitat heterogeneity) are present.  相似文献   

14.
Species richness of local communities is a state variable commonly used in community ecology and conservation biology. Investigation of spatial and temporal variations in richness and identification of factors associated with these variations form a basis for specifying management plans, evaluating these plans, and for testing hypotheses of theoretical interest. However, estimation of species richness is not trivial: species can be missed by investigators during sampling sessions. Sampling artifacts can lead to erroneous conclusions on spatial and temporal variation in species richness. Here we use data from the North American Breeding Bird Survey to estimate parameters describing the state of bird communities in the Mid-Atlantic Assessment (MAIA) region: species richness, extinction probability, turnover and relative species richness. We use a recently developed approach to estimation of species richness and related parameters that does not require the assumption that all the species are detected during sampling efforts. The information presented here is intended to visualize the state of bird communities in the MAIA region. We provide information on 1975 and 1990. We also quantified the changes between these years. We summarized and mapped the community attributes at a scale of management interest (watershed units).  相似文献   

15.
We describe a study designed to evaluate the performance ofwetland condition indicators of the Prairie Pothole Region (PPR)of the north central United States. Basin and landscape scaleindicators were tested in 1992 and 1993 to determine theirability to discriminate between the influences of grasslanddominated and cropland dominated landscapes in the PPR. Pairedplots were selected from each of the major regions of the PPR.Among the landscape scale indicators tested, those most capableof distinguishing between the two landscapes were: 1) frequencyof drained wetland basins, 2) total length of drainage ditch perplot, 3) amount of exposed soil in the upland subject to erosion,4) indices of change in area of wetland covered by water, and5) number of breeding duck pairs. Basin scale indicators includingsoil phosphorus concentrations and invertebrate taxa richnessshowed some promise; however, plant species richness was the onlystatistically significant basin scale indicator distinguishinggrassland dominated from cropland dominated landscapes. Althoughour study found a number of promising candidate indicators, oneof our conclusions is that basin scale indicators present anumber of implementation problems, including: skill levelrequirements, site access denials, and recession of site accessby landowners. Alternatively, we suggest that the use oflandscape indicators based on remote sensing can be an effectivemeans of assessing wetland integrity.  相似文献   

16.
The results of a biodiversity monitoring program conducted in the Ogawa Forest Reserve and its vicinity, situated in a cool temperate region of Japan, identified three different patterns for species richness. Forests of the region are characterized by a mosaic of secondary deciduous stands of various ages scattered among plantations of conifers. The three different types of change in species richness observed in response to the stand age are as follows: Type I (butterflies, tube-renting bees and wasps, hoverflies, fruit flies, and longicorn beetles), the species diversity was highest in open areas, just after clear-cutting, decreasing with the stand age; Type II (mushrooms and mites associated with them), older stands showed greater diversity than younger stands; and, Type III (moths, oribatid mites, collembolas, carabid beetles, and ants), the number of species did not change greatly with the stand age, though ordination analysis revealed that there was variation in species compositions. These results indicate that combinations of stands of different ages, or heterogeneously arranged stands, can contribute to the maintenance of insect biodiversity at the landscape level.  相似文献   

17.
A methodology was developed to prioritize the suitability of sites for long-term monitoring of avian populations, including vulnerable species, both to enhance assessment of changes in ecological resources and to facilitate land-use planning at the regional scale. This paper argues that a successful monitoring program begins with a site prioritization procedure that integrates scores based on spatial controls with ecological and socio-economic indicators, particularly those dependent on community involvement. The evaluation strategy in this study combines 1) spatial controls such as land ownership and accessibility, with 2) biological and habitat indicators such as vulnerable species and habitat connectivity, and 3) community and agency variables such as volunteer commitment and agency priorities. In total, a set of ten indicators was identified. This strategy was applied to predominantly agricultural landscapes, which are experiencing increasing human pressures, in three sub-watersheds of the Credit River, Southern Ontario. Specifically, bird populations were recorded during the breeding seasons of 2000-2002 in nine land units or habitat types including marsh, deciduous forest, and grasslands as mapped by Credit Valley Conservation (CVC) following Ecological Land Classification (ELC) guidelines. CVC selected sites for long-term monitoring in 2002 and the relationships between the scored (or ranked) sites and the selected long-term monitoring sites are discussed.  相似文献   

18.
The response of corticolous lichens, bryophytes, and vascular plants to anthropogenic edges in northern hardwood forest preserves is compared in east-coast and mid-west (NW Minnesota) sites, using micro-epiphytes on red oak (Quercus rubra) and sugar maple (Acer saccharum). The drastically attenuated lichen flora in the east, apparently due to regional air pollution, restricts the usefulness of these bioindicators, even 120 km from New York City. The forest edge is not necessarily equated with increased light. Established edges may have pronounced shoot growth that shades epiphytes. In the absence of air pollution, lichen and bryophyte species exhibit individual responses to light, humidity, and substrate chemistry. Thus summary variables such as total cover or species richness have limited value as bioindicators of forest integrity.  相似文献   

19.
20.
The Prairie Pothole Region of the northern GreatPlains is an important region for waterfowl production becauseof the abundance of shallow wetlands. The ecologicalsignificance of the region and impacts from intensiveagriculture prompted the U.S. Environmental Protection Agency to select it as one ofthe first areas for developing and evaluating ecologicalindicators of wetland condition. We examined hypothesizedrelations between indicators of landscape and wetlandconditions and waterfowl abundance on 45 40 km2 study sites in North Dakota for1995–1996. Landscape condition was defined a priori as the ratio of cropland area to total upland area surroundingwetlands. Measures of waterfowl abundance included estimatednumbers of breeding pairs (by species and total numbers) and , a species-specific correction factor which effectively adjusts breedingpair estimates for annual or area-related differences in pondsize. Landscape indicators and waterfowl measures varied among regions. Results indicated that most areas in the Coteau region are ofmuch higher quality for ducks than those in the Drift Plain,and areas in the Red River Valley are of the poorest qualityfor ducks. Regression models demonstrated the impact ofagricultural development on breeding duck populations in the PrairiePothole Region. The most consistent landscape indicators ofwaterfowl abundance were percent of cropland and grassland. Models were inconsistent among years and species. Thepotential biotic indicators of landscape and wetland condition examined here wouldbe appropriate for temporal trend analyses, but because ofinherent geographic variability would not be appropriate forsingle-year geographic trend analyses without more extensiveevaluations to improve explanatory models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号