首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seedlings of fir (Abies alba Mill.) and spruce (Picea abies L. Karst.) were fumigated with SO(2), O(3) and SO(2) + O(3) in open-top chambers (OTCs) for almost 5 vegetation periods. As background stress, simulated rain of pH 4.0 was applied. Nutrient content of soil, soil solutions, and trees was investigated and balanced. In the upper partition of the soil high concentrations of exchangeable Ca(2+) were found in all chambers. The SO(2) and SO(2) + O(3) treatments led to increased Ca(2+), Mg(2+) and Mn(2+) concentrations in soil solution and the pool of exchangeable protons increased. This response was most evident in the SO(2) and SO(2) + O(3) chambers and less clear in the filtered pH 5.0 control chamber. In the SO(2) treatment increased Mn and S levels were found in the needles. Ca content in the needles showed a decreasing trend. O(3) alone had no consistent effect on needle nutrient content.  相似文献   

2.
European beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Silver fir (Abies alba Mill.) were exposed to low concentrations of ozone (O(3)) and sulfur dioxide (SO(2)), alone and combined, and simulated acid rain (pH 4.0) in sheltered open-top chambers in Hohenheim (Southwest Germany) for almost five years. The concentrations of O(3) and SO(2) used were related to annual ambient average found in southern West Germany. Two control chambers were ventilated with charcoal filtered air and rainfall was simulated at pH 4.0 and 5.0. Because of large dense plant growth in the chambers it was only possible to measure uncompleted growth of shoots in the upper canopy. Therefore, growth analysis was restricted to this area. The treatment with acidic precipitation decreased the annual shoot growth of beech and reduced leaf surface area of those trees. Exposure to SO(2), O(3) alone and in combination resulted in further reduction of shoot length and leaf surface area. Fumigation with SO(2) and O(3) + SO(2) caused insignificant decreases of shoot length, total dry weight and needle surface area of spruce. The lateral leader shoot growth of spruce exposed to O(3) was significantly reduced only in the last year of the experiment. Growth rates of the spruce exposed to charcoal filtered air and non-acidic precipitation were reduced more than those of beech and fir. Growth variables determined for fir reflected different rates of incremental change. Exposure to O(3) resulted in the largest dry matter production of all fir groups but those exposed to charcoal filtered air and non-acidic precipitation responded with the best lateral leader shoot growth, lowest specific leaf area (SLA) and leaf area ratio (LAR) respectively indicating best metabolic efficiency. At the conclusion of this study a classification of sensitivity was developed for the tree species.  相似文献   

3.
Clone spruce trees (Picea abies L. Karst.) were exposed in the Hohenheim open-top chambers to low levels of O(3) and SO(2), singly and in combination, and to simulated precipitation of two pH treatments (Seufert et al., this volume). At the end of five years of continuous exposure, needles from the 13-year-old trees were sampled and analysed for pigments content by means of HPLC (high pressure liquid chromatography). The pigment content was determined for three needle age classes. Chlorophyll a content, measured on a dry weight basis, was similar for all needle age classes in the control chambers receiving only the simulated rain treatments at pH 5.0 or 4.0, and the chamber receiving O(3) and the rain treatment at pH 4.0. Also, no differences were noted in one-year-old needles in the chambers with SO(2) and simulated precipitation at pH 4.0 and SO(2) + O(3) and simulated precipitation at pH 4.0. Reductions of approximately 10 and 35% were measured in two-year-old needles from the chambers with SO(2) and precipitation at pH 4.0, and SO(2) + O(3) and precipitation at pH 4.0. The three-year-old needles from these chambers had 40% lower chlorophyll a content compared to the control chambers. No treatment effects were seen on the molar ratios of chlorophyll b, the carotenes, lutein, neoxanthin, and the sum of carotenoids involved in the xanthophyll cycle, violaxanthin + antheraxanthin + zeaxanthin, to chlorophyll [Formula: see text]. The xanthophyll cycle, assayed in one-year-old needles under defined light conditions (520 microE m(-2) s(-1), while light) was active in all samples. Needles from the control chambers and the chambers with SO(2) and with O(3) behaved similarly and differed from the SO(2) + O(3) treated needles by a 50% higher zeaxanthin content reached under light.  相似文献   

4.
This study was conducted to determine the physiological and growth responses of cotton (Gossypium hirsutum L.) to the interaction of ozonee (O3) and drought stress. Cotton (cv SJ-2) was grown in open-top chambers in the field at three levels of soil water and exposed to charcoal-filtered air (CF), nonfiltered air (NF), and NF x 1.25, and NF x 1.5 ambient O3 concentrations in Riverside, CA, from June to October 1986. Ozone reduced carbon fixation an average of 74.6% in optimally watered (OW) plots, 63.4% in suboptimal (SO) plots, but only 19.3% in severely water-stressed (SS) plots. Leaf and stem biomass in OW and SO plots showed similar linear reductions in mass response to increased O3 concentrations, but SS plots showed no response to O3 except at the highest O3 treatment (seasonal 12-h O3 mean of 0.111 ppm 218 microm(-3)). These results showed that moderately water-stressed cotton had similar physiological and growth responses to O3 as well-watered plants, but severely water-stressed cotton showed little response to O3 at ambient O3 concentrations.  相似文献   

5.
From 1983-88 the long-term effects of low level exposure with O(3), SO(2) and simulated acid rain on mineral cycling in model ecosystems with spruce, fir and beech seedlings were investigated. Systems consisting of open-top chambers built above lysimeters were protected against the intrusion of ambient rain and dust. As part of the investigations on mineral cycling the fluxes of elements with water input and output of the canopy and soil compartments are presented. During the 5 year duration of the experiment, pronounced effects on canopy deposition and cation leaching were observed. Most noticeable were throughfall enrichment with sulfate through dry deposition of SO(2) as influenced by duration of needlewetting and factors promoting SO(2) oxidation. Depending on sulfur deposition, leaching of calcium, magnesium, manganese, zinc and ammonium from canopies was elevated, in total leading to enhanced soil input of acid. After 15 months, the water percolating the soils in the lysimeters of these treatments was acidified, with elevated flowrates of sulfate, manganese, calcium and magnesium. The results on canopy/soil leaching are compared to those from old conifer stands in the field.  相似文献   

6.
The Hohenheim experiment represents a five year multi-disciplinary study of tree sapling responses to O(3), SO(2) and simulated acidic rain singly or in combination in modified open-top chambers. There are no comparable studies in North America which have been brought to completion at the present time. However, many of the results obtained in the Hohenheim study can be examined in the context of North American research. Independent of the differences in the methodology, the experimental conditions and the tree species used, many results are quite comparable between the Hohenheim study and the findings of North American research. However, since comparisons were made with studies in chambers of various types, caution must be used in extrapolating the results in addressing questions in the chamberless ambient conditions.  相似文献   

7.
White oak (Quercus alba L.) seedlings were exposed to charcoal-filtered air or to above-ambient ozone concentrations for 19-20 weeks during each of two growing seasons in continuously stirred tank reactors in greenhouses. Ozone treatments were 0.15 ppm (300 microg m(-3)) for 8 h day(-1), 3 days week(-1) in 1988, and continuous 15% above ambient in 1989. The seedlings were grown in forest soil watered twice weekly with simulated rain of pH 5.2. Responses of net photosynthesis to photosynthetically active radiation and intercellular CO(2) concentration were measured three times each year. There were no significant differences in light-saturated net photosynthesis or stomatal conductance, dark respiration, quantum or carboxylation efficiencies, and light or CO(2) compensation points on any date between control and ozone-exposed seedlings.  相似文献   

8.
Gas exchange was characterized in one- and two year-old spruce (Picea abies L. Karst.) and fir seedlings (Abies alba Mill.) which had been exposed to low levels of ozone, sulfur dioxide and simulated rain or a combination of all three variables in open top chambers from 1983 through 1988. The gas exchange measurements were carried out in March 1988 at the end of the five year experiment. The twigs examined did not exhibit any visible sign of injury, specifically no differences were apparent between trees under the treatments of simulated acidic rain at pH 5.0 and pH 4.0. The study of carbon dioxide response curves showed different effects of the pollutants on the tree species. One-Year-old spruce needles treated with O(3) and simulated acidic precipitation pH 4.0 showed noticeable reduction of net photosynthetic rate. Exposure to the combination O(3) and SO(2) at pH 4.0 resulted in a significant depression of photosynthesis in two-year-old needles Transpiration rate was not decreased to a similar extent. No changes either in photosynthesis or transpiration were found in spruce under fumigation with SO(2) alone. These results indicate that ozone is the principal cause of changes in photosynthetic performance of spruce. It alters mesophyll response rather than reducing stomatal conductance. The specific changes that occur in the mesophyll could be diagnosed as inactivation of a carbon fixing enzyme as well as damage of the electron transport system. Fir seem to be more tolerant to ozone. No changes in photosynthesis and transpiration following exposure to O(3) alone were found. However, SO(2) fumigation, alone or in combination with O(3), resulted in a marked decrease of photosynthetic performance. Particularly, carboxylation efficiency and also maximum carboxylation velocity were depressed indicating a reduction in carbon fixing enzyme activity. No differences between single and combined fumigation treatments regarding these variables were determined. However, parameters measured to determine changes in electron transport rate showed a higher depression in the presence of both pollutants. Transpiration also was reduced by SO(2).  相似文献   

9.
Spring wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) plants were exposed to simulated ozone (O(3)) episodes (7 h day(-1) for 7 days) at maximum concentrations of 120, 180 and 240 microg m(-3) O(3), in comparison to a charcoal-filtered air control. Fumigations were conducted in four closed chambers placed in a climate room. Exposures took place prior to inoculation of the plants with six different facultative leaf pathogens. On wheat, significant enhancement of leaf attack by Septoria nodorum Berk. and S. tritici Rob. ex Desm. appeared, particularly on the older leaves and at the highest level of O(3). The same was true for Gerlachia nivalis W. Gams et E. Müll/Fusarium culmorum (W.F.Sm.) Sacc. on wheat and net blotch (Drechslera teres (Sacc.) Shoem.) or G. nivalis leaf spots on barley. Disease development was promoted both on leaves with and without visible injury following exposure to O(3). Sporulation of the two Septoria species increased at 120 and 180 microg m(-3) O(3); however, it was reduced to the level of the control, if 240 microg m(-3) were applied. No significant effects of predisposition were observed with Bipolaris sorokiniana (Sacc.) Shoem. (syn. Helminthosporium sativum Pamm., King et Bakke), the causal agent of spot blotch, neither on wheat nor on barley. Doses and peak concentrations applied in the experiments were in good agreement with measurements of ambient ozone in Southern Lower Saxony, FRG. Six years' ozone data (1984-1989) revealed the annual occurrence of between 3 and 11 ozone episodes with potentially harmful effects on cereals (three or more consecutive 'ozone days' with 8-h means above 80 microg m(-3)). The frequency of ozone episodes followed by weather periods favourable for infections by facultative pathogens was higher in years with low O(3) pollution than in ozone-rich years, and varied between one and five cases per season. The number of ozone days during the main growing season of cereals (1 April until 31 August) varied from 25 in 1984 to 98 in 1989. However, only 7.9% of ozone days during the 6 years examined were concurrent with weather conditions suitable for fungal infections. It is concluded that the majority of leaf infections in the field happens under low-level concentrations of photooxidants.  相似文献   

10.
This paper introduces a series of publications referring to a single 14-month laboratory study testing the hypothesis that the recent decline of Norway spruce (Picea abies (L.) Karst.) at higher elevations of the Bavarian Forest and comparable forests in medium-range mountains and in the calcareous Alps is caused by an interaction of elevated ozone concentrations, acid mist and site-specific soil (nutritional) characteristics. The effect of climatic extremes, a further important factor, was not included as an experimental variable but was considered by testing of the frost resistance of the experimental plants. Results of these individual studies are presented and discussed in the following 14 papers. Plants from six pre-selected clones of 3-year-old Norway spruce (Picea abies (L.) Karst.) were planted in April 1985 in an acidic soil from the Bavarian Forest, or a calcareous soil from the Bavarian Alps. After a transition period, plants were transferred, in July 1986, into four large environmental chambers and exposed for 14 months to an artificial climate and air pollutant regime based on long-term monitoring in the Inner Bavarian Forest. The climatic exposure protocol followed realistic seasonal and diurnal cycles (summer maximum temperature, 26 degrees C; total mean temperature, 9.8 degrees C; winter minimum, -14 degrees C; mean relative humidity, 70%; maximum irradiance, 500 W m(-2); daylength summer maximum, 17 h; winter minimum, 8 h). Plants were fumigated with ozone, generated from pure oxygen (control: annual mean of 50 microg m(-3); pollution treatment: annual mean of 100 microg m(-3) with 68 episodes of 130-360 microg m(-3) lasting 4-24 h), and background concentrations of SO(2) (22 microg m(-3)) and NO(2) (20 microg m(-3)); windspeed was set at a constant 0.6 m s(-1). Plants were additionally exposed to prolonged episodes of misting at pH 5.6 (control) and pH 3.0 (treatment). Simulation of the target climatic and fumigation conditions was highly reliable and reproducible (temperature +/-0.5 degrees C; rh+/-10%; ozone+/-10 microg m(-3);SO(2) and NO(2)+/-15 microg m(-3)).  相似文献   

11.
A three-year study was initiated in 1987 to evaluate the impact of O3, acidic precipitation, and soil Mg on ectomycorrhizal colonization of loblolly pine (Pinus taeda L.) seedlings. Thirty-six open-top chambers equipped with a rainfall exclusion/addition system were utilized to administer three levels of O3 (subambient, ambient, or twice ambient) and two precipitation acidity levels (pH 3.8 or 5.2) to seedlings growing in 24-liter plastic pots containing soil having either 35 or 15 mg kg(-1) of exchangeable Mg. Seedlings exposed to the twice ambient O3 treatment exhibited smaller percentages of total ectomycorrhizal short roots at the end of each year of the study, but trends were statistically significant in 1989 only. Changes in number of specific ectomycorrhizal morphotypes in response to O3 were not consistent from year to year. Acidic precipitation treatments had no effect on number or percent of mycorrhizal short roots, and responses of two morphotypes to soil Mg treatments were probably due to differences in the soil environment rather than a result of changes in aboveground processes. Temporal shifts in morphotype frequencies were observed for seedlings in all treatments and indicate that mycorrhizal succession occurred during the study period.  相似文献   

12.
Quantification of runoff in laboratory-scale chambers   总被引:1,自引:0,他引:1  
Isensee AR  Sadeghi AM 《Chemosphere》1999,38(8):1733-1744
Many of the variables that control transport of agrochemicals and pathogens in the field are difficult to measure because parameters such as slope, soil and plant conditions, and rainfall cannot be adequately controlled in the natural environment. This paper describes the design, construction, operation and performance of a system useful for studying surface transport of agrochemicals and pathogens under controlled slope, rainfall and soil conditions. A turntable is used to support and rotate 4 soil chambers under oscillating dripper units capable of simulating rainfall intensities from 1 to 43 mm h-1. Chambers (35 x 100 x 18 cm i.d.) were constructed with an adjustable height discharge gate to collect runoff and three drains to collect leachate. Height adjustable platforms were constructed to support and elevate the chambers up to 20% slope. The chambers were uniformly packed with 35 to 45 kg of soil (bulk density 1.18-1.27 g cm-3) and initially saturated with two low intensity rain events. The coefficient of variation of the rainfall delivery over a range of 5 to 43 mm h-1 averaged 7.5%. An experiment to determine the variability between chambers in runoff amount and uniformity indicated that at least one runoff-equilibration cycle is needed to obtain steady state conditions for conducting runoff transport evaluations. Another experiment conducted to evaluate atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] runoff under simulated crop-residue covered vs bare soil conditions indicated six times more runoff from bare than crop residue covered soil. The system is capable of precise application of simulated rain, the simultaneous collection of runoff and leachate at slopes up to 20% and can be easily modified to meet a wide range of research parameters.  相似文献   

13.
Four non-filtered and four charcoal-filtered open-top chambers were employed to determine the effects of ambient levels of gaseous air pollutants at Braunschweig, FRG, on growth and yield of potted plants of winter and spring barley. During the exposure period (November 1985-August 1986) monthly mean values of gaseous air pollutants (microg m(-3)) ranged between 34 and 127 for SO(2), 34 and 52 for NO(2) and 12 and 33 for O(3) in winter (November-March), and 16 to 26 for SO(2), 20 to 33 for NO(2) and 42 to 53 for O(3) in spring-summer (April-August). Monthly 2% percentile values for these gases reached (microg m (-3)) 561 for SO(2), 140 for NO(2) and 170 for O(3). The filtering efficiencies of the charcoal filters used averaged 60% for SO(2), 50% for NO(2) and 70% for O(3). All plants of winter barley from the unchambered plot were killed by severe frost periods in winter, 1986. Little frost damage occurred on plants grown in the chambers. Air filtration resulted in higher numbers of plants of winter barley per pot, i.e. a higher number of individuals per area, and a higher dry weight of whole plants and ears compared to the non-filtered atmosphere. In the experiments with spring barley, fresh and dry weight of whole plants were lower and dry weight of leaves were higher in the filtered open-top chambers. These effects could not be observed at all harvests which were carried out during the growing season. Grain yield and sulphur content of the leaves of both barley cultivars were not affected by the air filtration. Production of biomass of spring barley grown in ambient air was higher than of that grown in open-top chambers.  相似文献   

14.
Dose-response studies with ethylenediurea (EDU) and radish   总被引:1,自引:0,他引:1  
There is some concern that the antiozonant ethylenediurea (EDU), used for crop loss assessment due to ambient ozone (O3) may per se affect plant growth and yield. In view of this, and to provide knowledge for later field experiments, dose-response studies with EDU and O3 were carried out in greenhouses in winter and spring 1989, using radish (Raphanus sativus L.) cv. 'Cherry Belle' and 'Red Prince', grown in two different substrates. EDU was applied as a single or repeated soil drench in concentrations ranging from 300 to 800 mg litre(-1) in the first, and from 100 to 400 mg litre(-1) in the second trial. In the second experiment, plants were exposed to a chronic level of O3, mimicking ambient patterns, or to filtered air after the EDU-treatment. When applied in concentrations above 300 mg litre(-1), EDU reduced growth, thereby affecting the development of the thickened hypocotyl far more than the shoot growth that was partially stimulated by lower doses of EDU. Phytotoxic symptoms on the leaves, attributable to EDU, were observed at concentrations above 200 mg litre(-1), but complete protection from visible O3-injury was provided by a single application of EDU at a concentration as low as 100 mg litre(-1). Significant interactions on growth characters measured between O3-exposure and EDU application were observed only in one of the substrates. While these results demonstrate the need for careful dose-response studies prior to field assessments, they also provide evidence of a dosage that is effective in protecting radish from O3 damage without interfering with plant growth itself.  相似文献   

15.
A multiple linear regression model was used to investigate seasonal and long-term trends in concentrations of ozone (O3) and acid-related substances at the Saturna Island monitoring station in southwestern British Columbia from 1991 to 2000. Statistically significant primary (dominant) cycles with a period of 1 yr were found for O3, sulfur dioxide (SO2), nitric acid (HNO3), and aerosol concentrations of sulfate (SO4(2-)), calcium (Ca2+) and chloride (Cl-). Of these, peak median concentrations occurred during the spring for O3 and Ca2+, during the warmer, drier months (April-September) for SO4(2-) and HNO3, and during the cooler, wetter months (October-March) for SO2 and Cl-. Statistically significant secondary cycles of 6 months duration were seen for concentrations of O3, SO4(2-), HNO3, Ca2+, and Cl-. Daily maximum O3 concentrations exhibited a statistically significant increase over the period of record of 0.33 +/- 0.26 ppb/yr. Statistically significant declines were found for concentrations of SO2, SO4(2-), HNO3, Ca2+, and potassium, ranging from 20 to 36% from levels at the start of the sampling period. Declines in ambient concentrations of SO2, SO4(2-), and HNO3 reflect local declines in anthropogenic emissions of the primary precursors SO2 and NOx over the past decade. Trends in Ca2+ and potassium ion concentrations are in line with a broader North American declining trend in acid-neutralizing cations.  相似文献   

16.
Single Scots pine (Pinus sylvestris L.) trees, aged 30 years, were grown in open-top chambers and exposed to two atmospheric concentrations of ozone (O3; ambient and elevation) and carbon dioxide (CO2) as single variables or in combination for 3 years (1994-1996). Needle growth, respiration and nitrogen content were measured simultaneously over the period of needle expansion. Compared to ambient treatment (33 nmol mol(-1) O3 and 350 micromol mol(-1) CO2) doubled ambient O3 (69 nmol mol(-1)) significantly reduced the specific growth rates (SGRs) of the needles in the early stage of needle expansion and needle nitrogen concentration (N1) in the late stage, but increased apparent respiration rates (ARRs) in the late stage. Doubled ambient CO2 (about 650 micromol mol(-1)) significantly increased maximum SGR but reduced ARR and N1 in the late stage of needle expansion. The changes in ARR induced by the different treatments may be associated with treatment-induced changes in needle growth, metabolic activities and turnover of nitrogenous compounds. When ARR was partitioned into its two functional components, growth and maintenance respiration, the results showed that neither doubled ambient O3 nor doubled ambient CO2 influenced the growth respiration coefficients (Rg). However, doubled ambient O3 significantly increased the maintenance respiration coefficients (Rm) regardless of the needle development stage, while doubled ambient CO2 significantly reduced Rm only in the late stage of needle expansion. The increase in Rm under doubled ambient O3 conditions appeared to be related to an increase in metabolic activities, whereas the decrease in Rm under doubled ambient CO2 conditions may be attributed to the reduced N1 and turnover rate of nitrogenous compounds per unit. The combination of elevated O3 and CO2 had very similar effects on growth, respiration and N1 to doubled ambient O3 alone, but the interactive mechanism of the two gases is still not clear.  相似文献   

17.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons.During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.  相似文献   

18.
Four-week-old paper birch (Betula papyrifera Marsh.) seedlings, inoculated or non-inoculated with the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker & Couch and grown in steamed or non-steamed soil, were exposed to ozone (O(3)) and/or simulated acid rain (SAR). Plants were exposed to O(3) for 7 h per day on 5 days per week for 12 weeks. O(3) concentrations were maintained between 0.06 and 0.08 ppm. SAR was applied 10 min per day on 2 days per week. O(3), SAR, soil regime and mycorrhizal treatment did not significantly affect any of the measured variables. Interactions between O(3) and SAR, SAR and mycorrhizal treatment, soil regime and mycorrhizal treatment and ozone and soil regime had significant effects. Treatment of seedlings with pH 3.5 SAR caused increases in growth which were more apparent in birch exposed to O(3). Mucorrhizal treatment caused increased growth in non-steamed soil, while growth appeared to decrease in steamed soil. Birch seedlings grew much better in steamed soil. The implications of increased growth in steamed soil may demonstrate the importance of looking at the secondary effects of pollutants on soil-borne organisms.  相似文献   

19.
This study was conducted to determine whether acidic cloudwater and ozone (O3) influence the growth of red spruce (Picea rubens L.) seedlings growing at a high elevation site in the southern Appalachian Mountains. A field exclusion chamber study was established at Whitetop Mountain, VA (elevation 1689 m) which included the following treatments: (1) clouds and O3 excluded (COE); (2) exposure to ambient O3 with clouds excluded (CE); (3) exposure to clouds and O3 (CC); and (4) ambient air plots (AA) that served as a control to evaluate possible chamber effects. After 2 years, seedlings exposed to ambient levels of O3 and cloudwater (AA and CC) did not differ in biomass accumulation, diameter growth, or epicuticular wax amounts from seedlings grown in chambers where pollution levels were reduced (CE and COE). Treatments receiving cloudwater (AA and CC) had statistically lower current-year needle concentrations of Ca and Mg, indicating that the cloudwater exposure dynamics occurring at this site elicited reductions in needle Ca and Mg. Ozone had negligible impact on all of the seedling parameters measured.  相似文献   

20.
Solanum tuberosum L. cv Norchip plants were grown in open-top chambers in the summer of 1986. Plants were treated with charcoal-filtered air, nonfiltered air, or nonfiltered air supplemented with 33, 66, or 99% of the ambient ozone (O3) concentrations from 1000 to 2000 h eastern daylight time daily. In addition, plants received charcoal-filtered air plus 0, 0.15 (393 microg m(-3)), 0.34 (891 microg m(-3)), or 0.61 (1598 microg m(-3)) ppm sulfur dioxide (SO2) from 0900 to 1200 h once every 14 d for a total of four treatments. Ozone induced a linear reduction in number and weight of Grade One (> 6.35-cm diameter) potato tubers and in total weight of tubers. Ozone also induced linear reductions in the percentage of dry matter of tubers and linear decreases in glucose and fructose content of Grade One tubers. Sulfur dioxide induced a stimulation and then decline of the number, percentage of dry matter, and sucrose content of Grade One tubers. The SO2 response best fit a quadratic curve. No O3 x SO2 interactions were detected for any of the yield or quality functions measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号