首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Incineration is one of the key technologies in disposal of municipal waste, which produces municipal solid waste incineration (MSWI) residues with high valuable metal contents. The recycling strategy for the MSWI residues is typically focused on the recovery of scrap metals yielding processed municipal solid waste incineration residues (PIR) as the main byproduct. However, the PIR still contains valuable metals, particularly gold, which cannot be extracted by conventional methods. Here, we evaluated the feasibility of using the 0.5–2.0 mm grain size fraction of PIR containing 28.82 ± 1.62 mg/kg of gold as raw material for a two-stage extraction process. In the first stage the alkalic fine-grained PIR was acidified with a solution of 20% (v/v) of HCl-containing flue gas cleaning liquid that is obtained by the municipal waste incineration plant itself as a waste product. In the second stage we leached the acidified fine-grained PIR by thiourea with Fe3+ as an oxidant. Application of the thiourea-Fe3+ leaching system resulted in recovery of 16.4 ± 1.56 mg/kg of gold from the fine-grained PIR within 6 h of incubation. Due to high gold market prices, upscaling of the suggested technology can represent a suitable strategy for gold recovery from PIR and other MSWI residues.

  相似文献   

2.
The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.  相似文献   

3.
Multiple-scale dynamic leaching of a municipal solid waste incineration ash   总被引:1,自引:1,他引:0  
Predicting the impact on the subsurface and groundwater of a pollutant source, such as municipal solid waste (MSW) incineration ash, requires a knowledge of the so-called "source term". The source term describes the manner in which concentrations in dissolved elements in water percolating through waste evolve over time, for a given percolation scenario (infiltration rate, waste source dimensions, etc.). If the source term is known, it can be coupled with a model that simulates the fate and transport of dissolved constituents in the environment of the waste (in particular in groundwater), in order to calculate potential exposures or impacts. The standardized laboratory upward-flow percolation test is generally considered a relevant test for helping to define the source term for granular waste. The LIMULE project (Multiple-Scale Leaching) examined to what extent this test, performed in very specific conditions, could help predict the behaviour of waste at other scales and for other conditions of percolation. Three distinct scales of percolation were tested: a laboratory upward-flow percolation column (30cm), lysimeter cells (1-2m) and a large column (5m) instrumented at different depths. Comparison of concentration data collected from the different experiments suggests that for some non-reactive constituents (Cl, Na, K, etc.), the liquid versus solid ratio (L/S) provides a reasonable means of extrapolating from one scale to another; if concentration data are plotted versus this ratio, the curves coincide quite well. On the other hand, for reactive elements such as chromium and aluminium, which are linked by redox reactions, the L/S ratio does not provide a means of extrapolation, due in particular to kinetic control on reactions. Hence extrapolation with the help of coupled chemistry-transport modelling is proposed.  相似文献   

4.
Residues reclaimed from a municipal solid waste (MSW) landfill were characterized for the concentrations of a number of heavy metals. The residue fractions analyzed included a fine fraction (<0.425 mm), an intermediate fraction (>0.425 and <6.3 mm) and a fraction consisting of paper products that could ultimately degrade to a smaller size. The intermediate fraction appeared to be organic in nature, while the fine fraction was more soil-like. In general, the metal concentrations were greatest in the intermediate fraction and lowest in the fine fraction. The effect of sample age on the elemental content was also investigated. The concentrations of several elements were greater in older samples (sample approximately 8 years in age) when compared to newer samples (sample approximately 3 years in age). Limitations associated with the land application of residual soil (composed of the fine and intermediate fractions) were assessed by comparing measured concentrations to regulatory threshold values. In general, most metal concentrations were below regulatory thresholds for use in unrestricted settings. At the concentrations measured, however, several elements might limit reuse options, depending on which regulatory threshold serves as a benchmark. Elevated concentrations of arsenic presented the greatest limitation with respect to common US thresholds while elevated cadmium concentrations presented the greatest limitation when compared to UK thresholds. The source of the arsenic was determined to be the waste, not the cover soil.  相似文献   

5.
Characterization of spent AA household alkaline batteries   总被引:4,自引:0,他引:4  
The aim of this work is identification of the structural components of actual domestic spent alkaline AA batteries, as well as quantification of some of their characteristics. Weight, humidity, ash content, zinc and zinc oxide on anode, manganese on cathode and other metals, potassium hydroxide on the internal components and heating values for papers, anode and cathode were determined in several batteries. As expected, cathode, anode and the steel can container are the main contributors to the 23.5 g average weight of the batteries. Cathode is also the major contributor to the positive heating value of the batteries as well as to the heavy metals content. Mercury was detected in very low levels in these mercury-free batteries. Zinc and zinc oxide amounts in the anodes are highly variable. Results obtained were compared to information on alkaline batteries in the literature from 1993 to 1995; and a positive evolution in their manufacture is readily apparent. Data from the producer of batteries shows some small discrepancies relative to the results of this experimental work.  相似文献   

6.
The release of inorganic and organic contaminants from municipal solid waste incinerator (MSWI) bottom ash is controlled to a large extent by the release of dissolved organic carbon (DOC), and in particular by the reactive humic (HA) and fulvic acids (FA) subfractions of DOC. The properties of organic matter contributing to the release of DOC, HA and FA are, therefore, important for environmental risk assessment. In this study we have quantitatively measured the carbon speciation, and its relation with the leaching of Cu, in three fresh and carbonated MSWI bottom ash samples. Results show that up to only 25% of loss on ignition (LOI) consists of organic carbon (OC), while about 17% of OC in the three samples consists of HA and FA. Up to 50% of DOC in MSWI bottom ash leachates was identified as fulvic acid (FA). This value is substantially higher than previously estimated for these MSWI bottom ash samples and is consistent with the higher recovery of the new method that was applied. The results of this study imply that methods focusing on specific carbon fractions are more appropriate for assessment of environmentally relevant organic carbon species than the measurement of LOI.  相似文献   

7.
Metallic phases in slags and their influence on the leaching characteristics were investigated. The proportions of metallic phase in four slags were 0.028%, 0.24%, 1.87%, and 3.05% by weight. The lead content was 10–248 mg/kg in bulk slag after metal removal, while in the metallic phase it was 579–7390 mg/kg. Lead concentrations in the metallic phase were more than ten times higher than in slags after metal removal. Lead was distributed in the metallic phase at 2.0%, 8.3%, 10.3%, and 47.4%. The concentrations of all metallic elements in metallic phases were much higher than in bulk slag. Iron, copper, and nickel had accumulated in magnetic metals, while aluminum and zinc were found in nonmagnetic metals. As regards chromium, manganese, lead, and tin, the proportion of metallic phases depended on the slag samples. By removing metallic phases, both water and pH 4 leachable lead decreased. The basic principles of melting residues containing lead are the separation of lead as a metal in reductive melting, and the containment of lead ions into uniform glassy particles in oxidization melting. Melting slag can be seen to contribute to environmental preservation by facilitating the recycling of materials through the separation of metals from melting slag. Received: February 21, 2000 / Accepted: July 27, 2000  相似文献   

8.
Fly ash (FA) from municipal solid waste incinerators has been known as hazardous waste, which is mostly because of the high content of heavy metal and dioxins. Besides the content, the form of the heavy metals in fly ash is also very important, because it is tightly related with the leaching behavior of fly ash in diverse circumstances. To evaluate the environment potential risk of fly ash, the Tessier chemical extraction method was adopted. In this study, four kinds of fly ash were examined, one sample from China (CFA) and the other three from Japan (RFA, CaFA and NaFA). Five metal elements were detected and they were Ni, Cr, Cd, Pb, and Cu. The result of total heavy metals’ concentration showed CFA has the lowest content. As to the Tessier chemical extraction experiments, the results show that Cd, Pb, and Cu have higher leaching risk in the environment than other heavy metals. The result of leaching test experiment showed that the more exchangeable speciation of Cd, Cr and Pb in FA, the more it could leach out in natural environment.  相似文献   

9.
Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.  相似文献   

10.
Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050 °C and in a muffle oven at temperatures from 500 to 1200 °C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel.  相似文献   

11.
Air-pollution-control (APC) residues from waste incinerators are hazardous waste according to European legislation and must be treated prior to landfilling. Batch and column leaching data determine which type of landfill can receive the treated APC-residues. CEN standards are prescribed for the batch and column leaching test; however, these standards do not specify whether or not the residue samples should be dried prior to the leaching testing. Laboratory tests were performed in parallel (dried/non-dried) on treated APC-residue samples and evaluated with respect to Cr, Cd, Cu, Pb and Zn leaching. The effect of drying of the wet APC-residue samples was particularly dramatic regarding the leaching of Cr. Drying resulted in 10-100 times more Cr leaching in both batch and columns test. Drying also affected the leaching of Cd, Cu and Pb. Initial Cd leaching was up to 100 times higher in column tests with dried APC-residue than in tests with wet residues. The effect of drying appeared to be a combination of decreasing the reduction capacity of the sample (Cr), decreasing pH (Cd, Cu) and in column tests also a wash-out of salts (probably affecting Cd and Pb). If the leaching tests are intended to mimic landfill conditions, the results of this paper suggest that the tests should be done on wet, non-dried residue samples, although this may be less practical than testing dried samples.  相似文献   

12.
The influence of pH on the leaching behaviour of air pollution control (APC) residues produced in municipal solid waste incineration (MSWI) is addressed in this study. The residue is considered hazardous waste, and in accordance with their chemical properties, the leaching of contaminants into the environment is the main concern. Several leaching tests can be used for research studies or regulatory purposes, where a wide variety of conditions may be tested. Our work deals mainly with the leaching behaviour of toxic heavy metals (Pb, Cd, Zn, Cr, Ni, Cu) and inorganics associated with soluble salts (Na, K, Ca, Cl). The main goal is to obtain an overview of the leachability of APC residues produced in a Portuguese MSWI process. Among the different variables that may have influence on the leaching behaviour, pH of the leachant solution is the most important one, and was evaluated through pH static tests. The acid neutralization capacity (ANC) of the residue was also determined, which is in the range of 6.2–6.8 meq g?1 (for pH = 7) and 10.1–11.6 meq g?1 (for pH = 4). The analysis of the leaching behaviour is particularly important when the leaching is solubility controlled. The amphoteric behaviour of some elements was observed, namely for Pb and Zn, which is characterized through high solubilization at low and high pH and moderate or low solubility at neutral or moderate high pH. The solubility curves for Pb, Cd, Zn, Cr, Ni and Cu as a function of pH were obtained, which are very useful for predicting the leaching behaviour in different scenarios. The solubility of K and Na reveals to be nearly independent of the solution pH and the released amount is mainly availability-controlled. Moreover, the pH static test showed that Cl? is the most pH-independent species. The APC residue turns out to be a hazardous waste because of the high leaching of lead and chloride. On the other hand, leaching of elements like cadmium, nickel and copper is limited by the high pH of the residue, and as long as the waste keeps its ANC, the risk of mobilization of these elements is low.  相似文献   

13.
This study focuses on evaluation and quantification of factors affecting leachability of lead from bottom ashes of municipal solid waste incinerators (MSWI) by utilizing a database. The database, which was constructed with data collected from sources such as research papers, questionnaires and reports, consists of 1149 data sets on 508 MSWI plants. Factors chosen as affecting lead leachability included: pH in the leachate, loss on ignition of bottom ash, total content of lead, and content of main elements such as Fe, Mn, Si and Al. The lead leachability was reduced to a minimum at neutral pH, increased with increasing pH and, especially, showed an abrupt increase at pH levels above 12. The main factor controlling the pH of the leachate appeared to be leachable Ca(2+) originating from portlandite (Ca(OH)(2)). Leaching concentration increased with increasing total contents of lead, and the relationship between leaching of lead and loss on ignition showed no distinct tendencies. The lead leaching ratio increased with decreasing total contents of Si, Mn and Fe. It is evident, therefore, that these numerous factors determine the leachability of lead in a simultaneous and complex manner.  相似文献   

14.
Hazardous waste incineration (HWI) in rotary kilns and the disposal of the residual slag on landfills play an important role in German waste treatment. In order to save disposal costs the elution behaviour of HWI-slag should be further optimised. Quality-improved slag may be disposed off on cheaper landfill sites still applying to landfill regulations. In a new process-integrated approach hazardous waste is mixed with limestone, which initiates chemical reactions with heavy metals in the rotary kiln yielding new compounds of different solubility. In this work HWI-slag/limestone mixtures are thermally treated and then examined by elution tests. Experimental data indicate that the heavy metals pertinent to landfill class assignment of a HWI-slag share a solubility minimum at a CaO-content of about 15%. Such improved HWI-slags are allowed to be disposed off on cheaper landfill sites. Furthermore, a new combination of thermodynamic calculation methods is applied to predict heavy metal solubility for different process conditions. Used models hold the opportunity to explain the tendencies of heavy metal leaching and propose plausible chemical reactions. With it, a new tool to examine the impact of temperature treatment and slag composition on heavy metal elution from HWI-slag is presented.  相似文献   

15.
In this study, percolation and batch leaching tests were considered in order to characterize the behaviour of air pollution control (APC) residues produced in a municipal solid waste incinerator (MSWI) as a function of the liquid to solid ratio (L/S). This waste is hazardous, and taking into account their physical and chemical properties, leaching of contaminants into the environment is the main concern. In our work the leaching behaviour of toxic heavy metals (Pb, Zn, Cr, Ni and Cu) and inorganics associated with soluble salts (Na, K, Ca and Cl) was addressed. Although pH of the leaching solution is the most important variable, L/S may also play an important role in leaching processes. In our work, results from column and batch tests were compared in terms of concentration (mg/L) and releasing (mg/kg). The APC residues revealed to be hazardous according to both tests, and both Pb and Cl far exceeded the regulatory thresholds. The material exhibits high solubility, and when the liquid to solid ratio was high, more than 50% can be solubilised. The patterns of release may be in some cases availability or solubility controlled, and the former was easier to identify. When the results from column and batch experiments were compared by representing the cumulative released amounts (in mg/kg) as a function of L/S, both curves match for Zn, Ni, Cu, K, Na, Cl and Ca, but for Cr and Pb a significant difference was observed. In fact, the column experiments revealed that under percolation conditions it should be expected slow releasing of Pb along time. From this study, it can be concluded that the released amounts obtained in batch experiments for a certain L/S should be considered as the worst case for medium term. Some simple models proposed on the literature and based on local equilibrium assumption showed good fitting to experimental data for soluble species (non-reactive solutes).  相似文献   

16.
Biostabilization of municipal solid waste   总被引:3,自引:0,他引:3  
A mechanical-biological process for municipal solid waste (MSW) treatment was monitored for one year. Mechanical pre-treatment provided two fractions. The oversize fraction (diameter > 50 mm) (yield of 600 g kg(-1) ww) (46 Mg day(-1)) was used for refuse derived fuel production, after undergoing a mechanical refining processes, because of low moisture content (200-250 g kg(-1)) and high calorific value (2500-2800 kcal kg ww(-1)). The undersize fraction (diameter < 50 mm) (yield 400 g kg(-1) ww) (30 Mg day(-1)) contained about 800 g kg(-1) of the MSW organic matter. This fraction was biologically treated using an aerobic process with an organic waste fraction from separate collection (77 Mg day(-1)) and recycled stabilized material (62 Mg day(-1)) obtained from end-product sieve (diameter < 20 mm) used as bulking agent. A retention time of three weeks was sufficient to obtain stabilized products in agreement with up-dated rules of the Lombardy Region (North Italy) regarding biostabilization and composting processes. Dynamic Respiration Index (DRI), such as required by both Lombardy Region rules and suggested by the European Community, was chosen in preference to other indices in order to assess the degree of biological stability of the end products. A mean DRI value of 1164 mg O2 kg SV(-1) h(-1) was obtained and is in agreement with the proposed limit of 1000+/-200 mg O2 kg SV(-1) h(-1). Self-heating test, potential biogas production and fermentable volatile solids were also used as parameters to describe the potential impact of treated waste, providing further useful information. Nevertheless, all of these methods revealed analytical or interpretative limits. A complete mass balance of the biological treatment section showed that, from a net input of 107 Mg day(-1), only 250 g kg(-1) (27 Mg day(-1)) of the waste needed to be landfilled, with 750 g kg(-1) (80 Mg day(-1)) being lost as CO2 and H2O.  相似文献   

17.
The paper presents an analysis of the factors influencing the recycling potential of municipalities in Israel, including population size and density, geographic location, current waste levels, and current waste management system. We employ a standard regression analysis in order to develop an econometric model to predict where potential for economically efficient recycling is highest. By applying this model to readily available data, it is possible to predict with close to 90% accuracy whether or not recycling will be economically efficient in any given municipality. Government agencies working to promote advanced waste management solutions have at their disposal only limited resources and budget, and so must concentrate their efforts where they will be most effective. The paper thus provides policy-makers with a powerful tool to help direct their efforts to promote recycling at those municipalities where it is indeed optimal.  相似文献   

18.
With the increase in the number of municipal solid waste incineration (MSWI) plants constructed in China recently, great attention has been paid to the heavy metal leaching toxicity of MSWI residues. In this study, the effects of various parameters, including extractant, leaching time, liquid-to-solid ratio, leachate pH, and heavy metal content, on the release properties of Cd, Cr, Cu, Ni, Pb, and Zn from MSWI bottom ash were investigated. Partial least-squares analysis was employed to highlight the interrelationships between the factors and response variables. Both experimental research and geochemical modeling using Visual MINTEQ software were conducted to study the pH-dependent leaching behavior of these metals in fresh and weathered bottom ash, considering precipitation/dissolution and surface complexation reactions (adsorption by hydrous ferric oxide and amorphous aluminum oxide/hydroxide). The results showed that leachate pH was the predominant factor influencing heavy metal leachability. The leaching of Cu, Pb, and Zn was mainly controlled by precipitation/dissolution reactions, whereas surface complexation had some effect on the leaching of Cr, Cd, and Ni for certain pH ranges. The modeling results aggreed well with the experimental results. Part of this work was presented at the Fourth International Conference on Combustion, Incineration/Pyrolysis and Emission Control (i-CIPEC)  相似文献   

19.
Four different leaching tests were carried out with spent alkaline batteries as an attempt to quantify the environmental potential burdens associated with landfilling. The tests were performed in columns filled up with batteries either entire or cross-cut, using either deionized water or nitric acid solution as leachant. In a first set of tests, the NEN 7343 standard procedure was followed, with leachant circulating in open circuit from bottom to top through columns. These tests were extended to another leaching step where leachant percolated the columns in a closed loop process.Leachate solutions were periodically sampled and pH, conductivity, density, redox potential, sulphates, chlorides and heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were determined in the samples.The results showed that the total amount of substances leached in tests with cross-cut batteries was higher than with entire ones; zinc and sulphates were the substances found the most in the leachate solutions. In general, the amount of substances dissolved in open circuit is higher than in closed loop due to the effect of solution saturation and the absence of fresh solution addition.Results were compared with metal contents in the batteries and with legal limits for acceptance in landfill (Decision 2003/33/CE and Decree-Law 152/2002). None of the metals were meaningfully dissolved comparatively to its content in the batteries, except Hg. Despite the differences in the experiment procedure used and the one stated in the legislation (mixing, contact time and granulometry), the comparison of results obtained with cross-cut batteries using deionized water with legal limits showed that batteries studied could be considered hazardous waste.  相似文献   

20.
We investigated an environmentally friendly leaching process for the recovery of cobalt and lithium from the cathode active materials of spent lithium-ion batteries. The easily degradable organic acid DL-malic acid (C4H5O6) was used as a leaching reagent. The structural, morphology of the cathode materials before and after leaching were characterized by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The amount of Co and Li present in the leachate was determined by atomic absorption spectrophotometry (AAS). Conditions for achieving a recovery of more than 90 wt.% Co and nearly 100 wt.% Li were determined experimentally by varying the concentrations of leachant, time and temperature of the reaction as well as the initial solid-to-liquid ratio. We found that hydrogen peroxide in a DL-malic acid solution is an effective reducing agent because it enhances the leaching efficiency. Leaching with 1.5 M DL-malic acid, 2.0 vol.% hydrogen peroxide and a S:L of 20 g L?1 in a batch extractor results in a highly efficient recovery of the metals within 40 min at 90 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号