共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
四氯化碳的生产和使用,给人类带来了较大危害。为此,采用纳米铁粉这一新方法对其进行脱氯处理。试验以纳米级铁粉对四氯化碳的脱氯率为考察指标,选用L25(5^6)正交试验方案,考察了降解介质的初始pH值、纳米铁粉的质量、降解温度、摇床转速和脱氯时间5个影响因素。结果表明,pH值这一因素有极显著影响;在得出的纳米铁粉对四氯化碳脱氯的最佳工艺条件下,获得了99.5%的脱氯率,为有机氯化物脱氯开辟了一条新途径。 相似文献
3.
B D Lee W A Apel A R Miller 《Journal of the Air & Waste Management Association (1995)》1999,49(9):1068-1074
Research was performed to demonstrate the removal of carbon tetrachloride (CT) using compost biofilters operated under methanogenic conditions. Biofilters were operated at an empty-bed residence time of 2.8 minutes using nitrogen as the atmosphere. Hydrogen and carbon dioxide were supplied as an electron donor and carbon source, respectively, during acclimation of the bed medium microbes. Once methanogenesis was demonstrated, CT flow to the biofilter was established. Biofilters were operated over a CT concentration range from 20 to 700 ppbv for 6 months. Bed medium microbes were able to remove up to 75% of the inlet CT. At excessively high CT concentrations (> 500 ppmv), methane production and hydrogen utilization by the bed medium microbes appeared to be inhibited. CT removal by the biofilter decreased when the hydrogen supply was removed from the biofilter inlet, indicating that hydrogen acted as the electron donor for reductive dechlorination. The removal efficiency and relatively low empty bed residence times demonstrated by these laboratory-scale biofilters indicate that anaerobic biofiltration of CT may be a feasible full-scale process. 相似文献
4.
The effect of several sulphur compounds: sodium sulphate, sodium sulphide, ferrous sulphide,pyrite and an organosulphonic acid on the kinetics of the iron (Fe °) induced degradation of carbon tetrachloride was examined under aerobic conditions. It was observed that all of the sulphur compounds investigated significantly accelerated the reaction. The mechanisms of the processes studied as well as their possible influence on the efficiency of the iron-induced dehalogenation of pollutants, both in situ and in above-ground treatment are discussed. 相似文献
5.
Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface 总被引:2,自引:0,他引:2
Timothy L. Johnson William Fish Yuri A. Gorby Paul G. Tratnyek 《Journal of contaminant hydrology》1998,29(4):2876
Dehalogenation of chlorinated aliphatic contaminants at the surface of zero-valent iron metal (Fe0) is mediated by the thin film of iron (hydr)oxides found on Fe0 under environmental conditions. To evaluate the role this oxide film plays in the reduction of chlorinated methanes, carbon tetrachloride (CCl4) degradation by Fe0 was studied under the influence of various anions, ligands, and initial CCl4 concentrations ([P]o). Over the range of conditions examined in these batch experiments, the reaction kinetics could be characterized by surface-area-normalized rate constants that were pseudo-first order for CCl4 disappearance (kCCl4), and zero order for the appearance of dissolved Fe2+ (kFe2+). The rate of dechlorination exhibits saturation kinetics with respect to [P]o, suggesting that CCl4 is transformed at a limited number of reactive surface sites. Because oxidation of Fe0 by CCl4 is the major corrosion reaction in these systems, kFe2+ also approaches a limiting value at high CCl4 concentrations. The adsorption of borate strongly inhibited reduction of CCl4, but a concomitant addition of chloride partially offset this effect by destabilizing the film. Redox active ligands (catechol and ascorbate), and those that are not redox active (EDTA and acetate), all decreased kCCl4 (and kFe2+). Thus, it appears that the relatively strong complexation of these ligands at the oxide–electrolyte interface blocks the sites where weak interactions with the metal oxide lead to dehalogenation of chlorinated aliphatic compounds. 相似文献
6.
Nanoscale zerovalent copper supported on a cation resin was successfully synthesized to enhance the removal of carbon tetrachloride (CCl(4)) from contaminated water. The use of the cation resin as a support prevents the reduction of surface area due to agglomeration of nanoscale zerovalent copper particles. Moreover, the cation resin recycles the copper ions resulting from the reaction between CCl(4) and Cu(0) by simultaneous ion exchange. The decline in the amount of CCl(4) in aqueous solution results from the combined effects of degradation by nanoscale zerovalent copper and sorption by the cation resin; thus the amount of CCl(4) both in aqueous solution and sorbed onto the resin were measured. The pseudo-first-order rate constant normalized by the surface-area and the mass concentration of nanoscale zerovalent copper (k(SA)) was 2.1+/-0.1 x 10(-2)lh(-1)m(-2), approximately twenty times that of commercial powdered zerovalent copper (0.04 mm). Due to the exchange between Cu(2+) and the strongly acidic ions (H(+) or Na(+)), the pH was between 3 and 4 in unbuffered solution and Cu(2+) at the concentration of less than 0.1 mg l(-1) was measured after the dechlorination reaction. In the above-ground application, resin as a support would facilitate the development of a process that could be designed for convenient emplacement and regeneration of porous reductive medium. 相似文献
7.
以浸渍法制备Pd—Cu/AC催化剂,以氢气为还原剂对催化还原硝酸盐进行研究,考察了制备条件及水中常见离子对催化还原的影响。结果表明,在200~500℃、30—240min焙烧条件下,适宜的焙烧温度为300℃,时间为2h;在100~300W,1~5min的微波条件下,微波功率引起的催化剂活性变化比微波照射时间显著,微波处理综合效应不利于催化性能的提高。活性炭经0.01~0.1mol/LEDTA处理后催化剂的活性随EDTA浓度增加,氨氮生成率没有明显变化。反应过程中氨氮的生成受No;的浓度影响明显,较高N2-浓度有利于选择性的提高。在初始NO3^-浓度100mg/L的条件下,Pd—Cu/AC催化还原硝酸盐的反应为一级反应。水中共存离子影响研究表明,CO3^2-、HCO/的存在不仅会硝酸盐的去除效率明显降低,同时导致氨氮生成率明显增加,S^2-存在使催化剂中毒,催化效率极低,Cl^-、SO4^2-的存在对硝酸盐的去除影响较小;水中阳离子存在时催化活性大小顺序为K+〈Na+〈Ca^2+〈Mg^2+〈Al^2+,氨氮的生成率大小顺序为K^+〉Na^+〉Ca^2+〉Mg^2+〉Al^2+。 相似文献
8.
Amy Pruden Marie A Sedran Makram T Suidan Albert D Venosa 《Water environment research》2005,77(3):297-303
The feasibility of biodegradation of the fuel oxygenate methyl tert-butyl ether (MTBE) under iron-reducing conditions was explored in batch and continuous-flow systems. A porous pot completely-mixed reactor was seeded with diverse cultures and operated under iron-reducing conditions. For batch studies, culture from the reactor was transferred anaerobically to serum bottles containing either MTBE alone or MTBE with ethanol (EtOH) and excess electron acceptor. In the continuous-flow reactor, MTBE conversion to tert-butyl alcohol (TBA) was observed after 181 days of operation, and stable removal was achieved throughout the remainder of the study. Simultaneously, both the MTBE only and the MTBE and EtOH iron-reducing batch serum bottles also began to degrade MTBE. Bottles were respiked and the degradation rate was determined to be 2.36 +/- 0.10 x 10(-4) mmol MTBE/min-kgVSS. The EtOH present with MTBE degraded faster (7.76 +/- 0.08 x 10(-3) mmol EtOH/min-kg VSS) but did not have a noticeable effect on the rate of MTBE degradation. No evidence of TBA degradation was observed by the iron-reducing cultures. Stoichiometry of iron utilization was determined from the iron balance of the continuous-flow reactor, and it was found that the bulk of the electron acceptor was required for energy and maintenance with little remaining for cell synthesis. This is consistent with a yield coefficient of less than 0.1. Molecular analysis of the iron-reducing culture by denaturing gradient gel electrophoresis indicated that uncultured strains of delta-Proteobacteria were dominant in the reactor. 相似文献
9.
采用直接热解法和碳热还原法分别制备了黑炭(BC)和黑炭负载零价铁(BF)材料,通过土壤稳定化培养实验和盆栽实验,考察了BC和BF对复合污染土壤中铜和铬的稳定化效果及其对生物有效性的影响。实验结果表明,BC可提高土壤pH,BF则降低土壤的pH。在投加量为5 g·kg-1的情况下,处理30 d后,BC和BF对土壤中TCLP-Cu的去除率分别为76.99%和69.83%;BC对TCLP-Crtotal和TCLP-Cr(VI)去除率分别为91.07%和92.47%,BF对TCLP-Crtotal和TCLP-Cr(VI)的去除率均接近100%,两者均能有效降低土壤重金属迁移性。形态分析表明,投加BC和BF均促进了铜由酸可提取态向可还原态和可氧化态转化,同时使铬的酸可提取态降低,可氧化态增加。盆栽实验表明,BC和BF均大大降低了土壤中铜和铬的生物有效性,减弱了其由植物根部向地上迁移的能力。相比而言,BF在对复合污染土壤中铜和铬的稳定化效果、形态转化以及迁移性方面整体优于BC。 相似文献
10.
Effect of carbon tetrachloride on sonochemical decomposition of methyl orange in water 总被引:2,自引:0,他引:2
Two types of sonicators were used for the sonochemical decomposition of methyl orange (MO) in the presence and absence of carbon tetrachloride (CCl4): One is a 45kHz ultrasonic cleaning bath (a low intensity sonicator) and the other is a 200kHz ultrasonic reactor (a high intensity sonicator). It was clearly confirmed that the rates of the sonochemical decomposition of MO increased with increasing the concentration of CCl4 in both sonicators. The enhancement effect of CCl4 was much higher in the high intensity sonicator than in the low intensity one: by the addition of 100ppm of CCl4, the decomposition ratio of MO with the high intensity sonicator became 41 times larger, while that with the low intensity sonicator became 4.8 times larger. Based on the obtained results, it was suggested that the formed cavitation phenomenon was different between sonicators. It was also suggested that the sonochemical decomposition of MO in the presence of CCl4 would be useful to evaluate the sonochemical efficiency, because the rate of MO decomposition can be effectively enhanced by the sonolysis of CCl4. 相似文献
11.
The objective of this research was to identify the dissolved species or solid phase mineral fraction(s) best correlated with rates of carbon tetrachloride (CT) reductive transformation in systems modeling sulfate-reducing and iron oxide-rich soils and sediments. We used sulfide (S(-II))-treated goethite as our model system, but also studied Fe(II) and S(-II)-treated goethite, Fe(II)-treated goethite, pure FeS, and Fe(II)-treated FeS in order to isolate and evaluate the influence of different mineral fractions on reaction rates. Initial rates of CT transformation were measured for different pH values and concentrations of added Fe(II), as well as different aging times and conditions. The following dissolved species and iron and sulfur mineral fractions were quantified and compared with CT transformation rates: aqueous Fe(2+) and S(-II), surface associated Fe(II) (including weakly and strongly bound Fe(II)), FeS(s), and Cr(II) reducible solid phase S. Over the pH range of 6-10, CT transformation rates were correlated with surface associated Fe(II), while at pH 8, rates were correlated with weakly bound Fe(II). Aging of S(-II)-treated goethite led to oxidation of surface sulfur and a change in the concentration of weakly bound Fe(II), but did not change the relationship between initial rates and weakly bound Fe(II). The results of this research suggest that surface associated Fe(II) and weakly bound Fe(II) could serve as indicators of the potential for abiotic CT dechlorination in natural soils under sulfate-reducing conditions. 相似文献
12.
为了实现铜渣中的铁与硅及其他元素分离,提出了含碳球团-转底炉直接还原工艺综合回收铜渣中的铁、铜和锌等有价元素,首先对水淬铜渣配碳还原进行了热力学分析,然后采用FactSage热力学计算软件中的Equilib模块对碳热还原过程进行了理论计算,研究了温度、碱度和配碳量等工艺参数,对水淬铜渣碳热还原产物组成及收得率的影响。计算结果表明:Fe的收得率主要受温度的影响较大,碱度的影响不大,配碳量有一定影响,铁的收得率最高可以达到91%以上;Zn的收得率主要受温度的影响较大,900 ℃左右达到最大;Cu的收得率最高可达99%,并且受上述因素的影响相对小。为了保证铁的收得率,建议优化的工艺条件为:配碳量(C/O比)大于1.2、还原温度大于1 200 ℃、碱度大于0.6。 相似文献
13.
14.
不同阳离子对Fe~0还原硝酸盐的影响 总被引:1,自引:0,他引:1
由于水中硝酸盐污染的普遍性、难去除性和对人体健康的潜在危害性而引起人们的广泛关注。通过批实验,考察了不同阳离子(Fe2+、Fe3+和Cu2+)对Fe0还原硝酸盐的影响。结果表明,由于加入阳离子可直接或间接地增加溶液中的Fe2+而都能促进硝酸盐的还原,作用顺序为Fe3+Fe2+Cu2+;Fe2+对硝酸盐的还原具有重要作用,并随着反应的进行,转化为铁氧化物附着在铁表面而降低铁的活性;硝酸盐还原的主要产物为氨氮,亚硝酸盐只在反应初期有少量积累,尤其是加Cu2+的体系中,但随后都很快降低;在所有体系中,检测到的三氮(NO3--N、NO2--N和NH4+-N)之和只占理论总氮的51.5%~82.6%;动力学分析表明,硝酸盐的还原在不加阳离子的体系中更符合一级反应,而加了阳离子的处理更符合Lo-gistic模型。本研究结果阐明了Fe2+对Fe0还原硝酸盐的重要性。 相似文献
15.
Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron 总被引:9,自引:0,他引:9
The dechlorination of tetrachloroethylene (PCE) by zerovalent iron (Fe(0)) in the presence of metal ions and humic acid was investigated. In the absence of metal ion and humic acid, 64% of the initial PCE was dechlorinated after 125 h with the production of ethane and ethene as the major end products. The dechlorination followed pseudo-first-order kinetics and the normalized surface rate constant (k(SA)) for PCE dechlorination was (3.43+/-0.61)x10(-3)lm(-2)h(-1). Addition of metal ions enhanced the dechlorination efficiency and rate of PCE, and the enhancement effect followed the order Ni(II)>Cu(II)>Co(II). The k(SA) for PCE dechlorination in the presence of metal ions were 2-84 times higher than that in the absence of metal ions. X-ray photoelectron spectroscopy (XPS) showed that Cu(II) and Ni(II) were reduced by Fe(0) to zerovalent metals, and resulted in the formation of bimetallic system to accelerate the dechlorination reaction. On the contrary, humic acid out-competed the reactive sites on iron surface with PCE, and subsequently decreased the dechlorination efficiency and rate of PCE by Fe(0). However, the reactivity of Fe(0) for PCE dechlorination in the presence of metal ions and humic acid increased by a factor of 3-161 when compared to the iron system containing humic acid alone. Since humic acid and metal ions are the most often found co-existing compounds in the contaminated aquifers with chlorinated hydrocarbons, results obtained in this study is useful to better understand the feasibility of using Fe(0) for long-term application to the remediation of contaminated sites. 相似文献
16.
Yuan Yue Guo Panpan Peng Xianjia 《Environmental science and pollution research international》2019,26(15):15255-15261
Environmental Science and Pollution Research - While the application and discharge of carbon nanomaterials (CNMs) increased rapidly, the research on the environmental safety of CNMs is also... 相似文献
17.
采用椰壳、果壳和木质活性炭进行尿液处理,分别研究了铁氧化物及尿液预处理对椰壳炭处理尿液的影响。结果表明:椰壳炭的比表面积最高,具有最佳的尿液处理效果,对TOC、${{\rm{PO}}_4^{3 - }} $ -P、TP、${{\rm{NH}}_4^ + } $ -N和TN的去除率可达35.02%、8.17%、11.98%、39.42%和14.79%;投加的铁氧化物对P的去除效果较好,去除率提高了14%,且酸预处理进一步提升了P的去除效果,去除率提高了9.29%;但在酸性条件下,有机物和${{\rm{NH}}_4^ + }$ -N的吸附能力略有所下降;吸附过程对有机物的削减主要是由于活性炭的吸附及尿素的分解所致;N去除的主要机理是由于鸟粪石的沉淀所致;P削减的主要原因为铁氧化物表面的羟基位点吸附和鸟粪石沉淀,酸性条件可促进铁氧化物和${{\rm{PO}}_4^{3 - }}$ 发生质子化过程,因此,其可进一步强化P的去除。综合上述结果,铁氧化物-活性炭吸附可有效去除尿液中有机物和P,是一种有效的尿液预处理工艺,以上结果可为尿液的处理和回收提供参考。 相似文献
18.
An innovative haloacetic acid (HAA) removal process was developed. The process consisted of a zero-valent iron (Fe0) column followed by a biologically active carbon (BAC) column that were efficient in degrading tri- and di-HAAs, and mono- and di-HAAs, respectively. The merit of the process was demonstrated by its performance in removing trichloroacetic acid (TCAA). An empty bed contact time of 10 min achieved nearly complete removal of 1.2 μM TCAA and its subsequent products, dichloroacetic acid (DCAA) and monochloroacetic acid (MCAA). HAA removal was a result of chemical dehalogenation and biodegradation rather than physical adsorption. Preliminary kinetic analyses were conducted and the pseudo-first-order rate constants were estimated at ambient conditions for Fe0 reduction of TCAA and biodegradation of DCAA and MCAA by BAC. This innovative process is highly promising in removing HAAs from drinking water, swimming pool water, and domestic or industrial wastewater. 相似文献
19.
Chen F Yang Q Pehkonen SO Ray MB 《Journal of the Air & Waste Management Association (1995)》2004,54(10):1281-1292
The relationship between the irradiance in a photoreactor and the rate of photodegradation of organics is essential in the scaling-up of photoreactors to treat large volumes of air contaminated with organic pollutants. In this study, the analysis is adopted to compare results obtained from two different photoreactors. Initially, the applicability of two light models in calculating the irradiance in two photoreactors was evaluated. Thereafter, kinetic models of ultraviolet (UV) photooxidation of chloroform (CHCl3) and carbon tetrachloride (CCl4) from the archived literature were tested using experimental data under various operating conditions and different irradiances. Sensitivity analyses were conducted using different values of model parameters to determine the significance of each parameter on the photodegradation of the two chlorinated organics. For compounds that undergo photolysis as a primary mode of degradation, the rate of photodegradation at low initial concentrations can be predicted easily by the following equation: d[C]/dt = -2.303Iave, lambdaepsilonlambdaphilambda[C]. Although the photodegradation of chlorinated organic compounds in dry and humid air can be predicted well, it is difficult to predict the Cl* sensitized oxidation occurring at high initial concentrations. A good agreement between the simulated and experimental data provides a sound basis for the design of large-scale reactors. 相似文献
20.
Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide 总被引:2,自引:0,他引:2
F.B. Li X.M. Li S.G. Zhou F. Cao D.Y. Huang T.X. Liu 《Environmental pollution (Barking, Essex : 1987)》2010,158(5):1733-5252
The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. 相似文献