首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scleractinian corals experience a wide range of flow regimes which, coupled with colony morphology, can affect the ability of corals to capture zooplankton and other particulate materials. We used a field enclosure oriented parallel to prevailing oscillatory flow on the forereef at Discovery Bay, Jamaica, to investigate rates of zooplankton capture by corals of varying morphology and polyp size under realistic flow speeds. Experiments were carried out from 1989 to 1992. Particles (Artemia salina cysts) and naturally occurring zooplankton attracted into the enclosures were used as prey for the corals Madracis mirabilis (Duchassaing and Michelotti) (narrow branches, small polyps), Montastrea cavernosa (Linnaeus) (mounding, large polyps), and Porites porites (Pallas) (wide branches, small polyps). This design allowed corals to be used without removing them or their prey from the reef environment, and avoided contact of zooplankton with net surfaces. Flow speed had significant effects on capture rate for cysts (M. mirabilis), total zooplankton (M. mirabilis, M. cavernosa), and non-copepod zooplankton (M. mirabilis). Zooplankton prey capture increased with prey concentration for M. mirabilis and M. cavernosa, over a broad range of concentrations, indicating that saturation of the feeding response had not occurred until prey density was over 104 items m−3, a concentration at least an order of magnitude greater than the normal range of reef zooplankton concentrations. Location of cyst capture on coral surfaces was not uniform; for M. cavernosa, sides and tops of mounds captured most particles, and for P. porites, capture was greatest near branch tops, but was close to uniform for M. mirabilis branches in all flow conditions. The present study confirms laboratory flume results, and field results for other species, suggesting that many coral species experience particle flux and encounter rate limitations at low flow speeds, decreasing potential zooplankton capture rates. Received: 17 September 1996 / Accepted: 22 November 1997  相似文献   

2.
The distribution and abundance of juvenile corals were examined at depths from 3 to 37 m on the reefs of Curaçao and Bonaire (Netherlands Antilles). Juveniles of Agaricia agaricites were most abundant (60.6%), followed by Helioseris cucullata (8.3%). The large massive corals such as Montastrea annularis, M. cavernosa and branched species such as Madracis mirabilis and Acropora palmata had few juveniles. This, combined with species characteristics, shows that these species employ very different life history strategies. In some species the abundance of juveniles over the reef paralleled that of larger colonies, but not for example in Agaricia agaricites. The composition of the coral community was apparently no direct function of juvenile abundance. A change in angle of settlement of A. agaricites juveniles with increasing depth, from vertical to horizontal surfaces, seems to reflect the preferred light intensity. We studied the survival of juvenile corals during a half-year period. One-third remained unharmed, one-third died or disappeared, and one-third was limited in growth by factors such as spatial competition. This was the same for all depths, but factors influencing survival varied with depth.  相似文献   

3.
G. Piniak 《Marine Biology》2002,141(3):449-455
Symbiotic temperate corals can supplement prey capture by the coelenterate host with autotrophic carbon production by endosymbiotic zooxanthellae. To test the relationship between heterotrophic consumption and photosynthetic energy, prey capture by symbiotic and aposymbiotic specimens of the temperate scleractinian coral Oculina arbuscula (Verrill) was measured in January-April 2001. Corals were tested in a laboratory flume at five flow speeds, using Artemia franciscana cysts and nauplii as prey. Per-polyp capture rate and feeding efficiency were independent of symbiotic condition. Capture rate increased with flow speed, while capture efficiency declined. The location of capture shifted from the upstream to downstream side of the coral as flow speed increased. Differences in capture rate, location, and feeding efficiency for cysts and live brine shrimp nauplii were likely due to prey size rather than swimming ability.  相似文献   

4.
R. R. Seapy 《Marine Biology》1980,60(2-3):137-146
In surface waters off Southern California (USA), Carinaria cristata forma japonica van der Spoel, 1972 feeds on a variety of zooplankton, although thaliaceans, chaetognaths, and copepods predominate numerically in the diet. Feeding intensity is greatest on the most abundant of two species of thaliaceans, depending on which one dominates in the plankton at the time. Some cannibalism occurs, with the prey being about one half the size of the predator. Feeding intensity is greatest during the day, possibly because heteropods depend on vision to locate prey and because prey species are more available by day. Comparisons of the proportion of each prey species in the diet and in the plankton indicate preferential feeding on thaliaceans, chaetognaths, and mollusks; in contrast, crustaceans and especially the copepods are non-preferred prey. These preference patterns may reflect differences among prey species in the ability to escape capture. Predator and prey size are positively correlated for Doliolum denticulatum gonozoids and oozoids, Thalia democratica aggregates, and Sagitta spp. Smaller individuals of D. denticulatum gonozoids and Sagitta spp. are selectively preyed on, resulting in size refuges for larger individuals.  相似文献   

5.
Demersal zooplankton, those plankton which hide within reef sediments during the day but emerge to swim freely over the reef at night, were sampled quantitatively using emergence traps planced over the substrate at Lizard Island Lagoon, Great Barrier Reef. Densities of zooplankton emerging at night from 6 substrate types (fine, medium, and coarse sand, rubble, living coral and reef rock) and from 5 reef zones (seaward face, reef flat, lagoon, back reef, and sand flat) were determined. A large population of nocturnal plankton including cumaceans, mysids, ostracods, shrimp, isopods, amphipods, crustacean larvae, polychaetes, foraminiferans and copepods are resident members of the reef community at Lizard Island. The mean density of plankton emerging throughout the reef was 2510±388 (standard error) zooplankton/m2 of substrate. Biomass averaged 66.2±5.4 mg ash-free dry weight/m2 of substrate. Demersal zooplankton exhibited significant preferences for substrate types and reef zones. The highest mean density of zooplankton emerged from coral (11,264±1952 zooplankton/m2) while the lowest emerged from reef rock (840±106 zooplankton/m2). The density of demersal plankton was six times greater on the face than in any other zone, averaging 7900±1501 zooplankton/m2. Copepods dominated samples collected over living coral and rubble while foraminiferans, ostracods and decapod larvae were most abundant from sand. Plankton collected with nets at night correlated only qualitatively with plankton collected in emergence traps from the same location. Although abundant, demersal plankton were not numerous enough to meet the metabolic needs of all corals at Lizard Island Lagoon. Demersal plankton appear especially adapted to avoid fish predation. The predator-avoidance strategies of demersal plankton and maintenance of position on the reef are discussed. Our results indicate that much of the zooplankton over coral reefs actually lives on the reef itself and that previous studies using standard net sampling techniques have greatly underestimated plankton abundance over coral reefs.  相似文献   

6.
Experimental studies of feeding on zooplankton often involve the use of non-evasive Artemia spp. to represent zooplanktonic prey. Some zooplankton, however, such as copepods, are potentially evasive due to possession of effective predator-avoidance mechanisms such as high-speed escape swimming. In the present study, we compared the efficiencies with which non-evasive (A. salina) and evasive (copepods) zooplankton were captured by a sessile, suspension feeder, the coral-inhabiting barnacle Nobia grandis (Crustacea, Cirripedia). N. grandis specimens and zooplankton used in the present study were collected near Eilat, Israel in 1993. The effect of different flow speeds (from 0 to 14 cm s-1) on captures of the two preys was also investigated. Additionally, we examined the effect of a flow-induced barnacle behavioral switch from active to passive suspension feeding, on zooplankton capture. Two video cameras were used to make close-up, three dimensional recordings of predator-prey encounters in a computer-controlled flow tank. Frame-by-frame video analysis revealed a highly significant difference (P< 0.001) in the efficiency with which A. salina and copepods were caught (A. salina being much more readily captured than copepods). After an encounter with cirri of feeding barnacles, copepods were usually able to swim out of the barnacles capture zone within one video frame (40 ms), by accelerating from a slow swimming speed (approximately 1.85 cm s-1) to a mean escape swimming speed of 18.11 cm s-1 (ca. 360 body lengths s-1). This was not the case for A. salina nauplii, which usually remained in contact with cirri before being transferred to the mouth and ingested. Thus, experimental studies addressing the methodology of organisms feeding on zooplankton should consider that slow-swimming prey like Artemia sp. nauplii may only represent the non-evasive fraction of natural mesozooplankton assemblages.  相似文献   

7.
Plankton data collected by Ikeda et al. (1980) from the central region of the Great Barrier Reef, and spanning two years (1976 through 1978) of zooplankton records, have been analyzed extensively for spatial and temporal patterns. Estimates of net zooplankton (including chaetognaths, copepods, and larvaceans) and microzooplankton (juvenile copepods, encompassing nauplii and copepodites, and ciliates) were assessed at three stations across the 60 km lagoon. Temperature, salinity, and chlorophyll a were also measured. A cross-lagoonal gradient was identified in the plankton, concurring with results of related surveys of benthic taxa, such as scleractinian corals, soft corals, macro-algae, fish, sponges, crinoids, etc. Two associations of net zooplankton were identified. The first was associated primarily with the inner lagoon; the second with the outer lagoon. The inshore association was characterized by higher abundances of almost all net zooplankton taxa, particularly chaetognaths, copepods, polychaetes, decapods, and meroplanktonic larvae as well as higher concentrations of chlorophyll a. This inshore association wove back and forth across the lagoon through time, dominating the lagoon entirely during periods of high river discharge, reaching the mid-shelf platform reefs in this region, and sometimes being entirely absent during dry periods. Both seasonal and annual peaks in plankton abundance were generally linked with degree of runoff. Summer/autumn peaks of abundance were evident in chaetognaths, copepods, and larvaceans while annual variation was detected in the former two as well as in chlorophyll a concentrations. Depth stratification was noted in juvenile copepods and chlorophyll a concentrations at the center of the lagoon, with higher abundances recorded in deeper waters. The central Great Barrier Reef lagoon was found to be typical of other tropical coastal waters where plankton community dynamics are controlled primarily by physical factors. We suggest that any substantial changes in river discharge in this area will affect plankton production.A.I.M.S. Contribution No. 242  相似文献   

8.
Although medusan predators play demonstrably important roles in a variety of marine ecosystems, the mechanics of prey capture and, hence, prey selection, have remained poorly defined. A review of the literature describing the commonly studied medusa Aurelia aurita (Linnaeus 1758) reveals no distinct patterns of prey selectivity and suggests that A. aurita is a generalist and feeds unselectively upon available zooplankton. We examined the mechanics of prey capture by A. aurita using video methods to record body and fluid motions. Medusae were collected between February and June in 1990 and 1991 from Woods Hole, Massachusetts and Narragansett Bay, Rhode Island, USA. Tentaculate A. aurita create fluid motions during swimming which entrain prey and bring them into contact with tentacles. We suggest that this mechanism dominates prey selection by A. aurita. In this case, we predict that medusae of a specific diameter will positively select prey with escape speeds slower than the flow velocities at their bell margins. Negatively selected prey escape faster than the medusan flow velocity draws them to capture surfaces. Faster prey will be captured by larger medusac because flow field velocity is a function of bell diameter. On the basis of prey escape velocities and flow field velocities of A. aurita with diameters of 0.8 to 7.1 cm, we predict that A. aurita will select zooplankton such as barnacle nauplii and some slow swimming hydromedusae, while faster copepods will be negatively selected.  相似文献   

9.
Water motion is an important factor affecting planktivory on coral reefs. The feeding behavior of two species of tube-dwelling coral reef fish (Chaenopsidae) was studied in still and turbulent water. One species of blenny, Acanthemblemaria spinosa , lives in holes higher above the reef surface and feeds mainly on calanoid copepods, while a second, A. aspera , lives closer to the reef surface, feeds mainly on harpacticoid copepods, and is exposed to less water motion than the first. In the laboratory, these two blenny species were video recorded attacking a calanoid copepod ( Acartia tonsa, evasive prey) and an anostracan branchiopod (nauplii of Artemia sp., passive prey). Whereas A. spinosa attacked with the same vigor in still and turbulent water, A. aspera modulated its attack with a more deliberate strike under still conditions than turbulent conditions. For both fish species combined, mean capture success when feeding on Artemia sp. was 100% in still water and dropped to 78% in turbulent water. In contrast, when feeding on Acartia tonsa, mean capture success was 21% in still water and rose to 56% in turbulent water. We hypothesize that, although turbulence reduces capture success by adding erratic movement to Artemia sp. (passive prey), it increases capture success of Acartia tonsa (evasive prey) by interfering with the hydrodynamic sensing of the approaching predator. These opposite effects of water motion increase the complexity of the predator-prey relationship as water motion varies spatially and temporally on structurally complex coral reefs. Some observations were consistent with A. aspera living in a lower energy benthic boundary layer as compared with A. spinosa: slower initial approach to prey, attack speeds modulated according to water velocity, and lower proportion of approaches that result in strikes in turbulent water.Communicated by P.W. Sammarco, Chauvin  相似文献   

10.
Most marine fishes undergo a pelagic larval phase, the early life history stage that is often associated with a high rate of mortality due to starvation and predation. We present the first study that examines the effects of prey swimming behavior on prey-capture kinematics in marine fish larvae. Using a digital high-speed video camera, we recorded the swimming velocity of zooplankton prey (Artemia franciscana, Brachionus rotundiformis, a ciliate species, and two species of copepods) and the feeding behavior of red drum (Sciaenops ocellatus) larvae. From the video recordings we measured: (1) zooplankton swimming velocity in the absence of a red drum larva; (2) zooplankton swimming velocity in the presence of a red drum larva; and (3) the excursion and timing of key kinematic events during prey capture in red drum larvae. Two-way ANOVA revealed that: (1) swimming velocity varied among zooplankton prey; and (2) all zooplankton prey, except rotifers and ciliates, increased their swimming velocity in the presence of a red drum larva. The kinematics of prey capture differed between two developmental stages in S. ocellatus larvae. Hyoid-stage larvae (3–14 days old) fed on slow swimming B. rotundiformis (rotifers) while hyoid-opercular stage larvae (15 days and older) ate fast moving A. franciscana. Hyoid-opercular stage red drum larvae had a larger gape, hyoid depression and lower jaw angle, and a longer gape cycle duration relative to their hyoid-stage conspecifics. Interestingly, the feeding repertoire within either stage of red drum development was not affected by prey type. Knowledge of the direct relationship between fish larvae and their prey aids in our understanding of optimal foraging strategies and of the sources of mortality in marine fish larvae.  相似文献   

11.
Plankton collected at discrete depths in Santa Monica Bay, California, USA, during January 1982 were examined for fish eggs and larvae that had been attacked or consumed by zooplankton. The bongo net remained open for only 3 min and samples were preserved within 5 min of capture. Juvenile and adult fishes that had been captured by otter trawl and preserved within 20 min of capture were examined for ingested fish eggs and larvae. Three copepods (Corycaeus anglicus, Labidocera trispinosa, and Tortanus discaudatus), one euphausid larva (Nyctiphanes simplex), one amphipod (Monoculoides sp.), and an unidentified decapod larva were found attached to fish larvae in the preserved plankton samples (attachment to 23% of the fish larvae was observed in one sample). Overall, about 5% of the white croaker (Genyonemus lineatus) larvae and 2% of the northern anchovy (Engraulis mordax) larvae had attached zooplankton predators. Most fish larvae with attached zooplankton predators were small. We found no indication of zooplankton predation on fish eggs. Few fish eggs and larvae were found in the digestive tracts of juvenile or adult fishes, and the ingested fish larvae were relatively large. The discussion considers apparent preyspecificity of the zooplankton predators as well as potential biases that may be associated with preserved samples collected by nets.  相似文献   

12.
The reef-building coral Montastrea cavernosa Linnaeus possesses sweeper tentacles which have enlarged nematocyst batteries. Sweeper tentacles appear to be used in defense of the coral's living space and may successfully deter mesenterial filament attacks from the more aggressive coral M. annularis. M. cavernosa therefore possesses a specialized defensive strategy that has not been taken into account by present models describing spatial competition in coral reef ecosystems.  相似文献   

13.
The dietary habits of the pelagic mysid Mysismixta were studied during its growing season at an open sea location in the Gulf of Finland, the northern Baltic Sea. Stomach samples were taken twice a month from June to September 1997. The most abundant phytoplankton taxa in the stomachs were diatoms and dinoflagellates, and copepods and cladocerans were the most abundant zooplankton identified. A clear change was found in the diets during the study period. Small mysids (3 to 6 mm) fed on sedimented phytoplankton in the early summer (90% benthic particles in June) but shifted gradually to a more pelagic and carnivorous diet (>40% pelagic particles, consisting of ca. 60% zooplankton in September). Seasonal changes in mysid capture ability as well as food availability were suggested to affect the diet composition of mysids during their growth. The ratio of pelagic and benthic food particles could – irrespective of the season – be explained by mysid size, whereas the zooplankton:phytoplankton ratio was better explained by season. The stomach analysis suggests that the mysids needed to attain a threshold size of 8 to 11 mm to initiate feeding on the more evasive copepods. Mysids also started to grow faster at the same time as the proportion of copepods increased in the diet, which suggests that copepods are an important energy source for M. mixta in late summer. Finally, a comparison was made between the M. mixta diet and that of the less abundant M. relicta. The diets of the two pelagic mysid species overlapped by 75% (Schoener's index). The main difference was due to M. mixta eating more zooplankton and pelagic material than M. relicta. Received: 15 September 1999 / Accepted: 18 January 2000  相似文献   

14.
This study documented the range of corals, and other prey types, consumed by 20 species of butterflyfishes, which co-occur at Lizard Island, northern Great Barrier Reef, Australia. Six species (Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. plebius, C. rainfordi and C. trifascialis) fed almost exclusively on scleractinian corals, and a further eight species (C. citrinellus, C. kleinii, C. lunula, C. melannotus, C. rafflesi, C. speculum, C. ulietensis, and C. unimaculatus) took a significant proportion of their bites from corals. The other six species (C. auriga, C. ephippium, C. lineolatus, C. semeion, C. vagabundus, and Chelmon rostratus) rarely consumed coral, but fed on small discrete prey items from non-coral substrates. Coral-feeding butterflyfishes consumed a wide range of corals. Chaetodon lunulatus, for example, consumed 51 coral species from 24 different genera. However, there was up to 72% dietary overlap between coral-feeding butterflyfishes, with 11/14 species feeding predominantly on Acropora hyacinthus or Pocillopora damicornis. The most specialised corallivore, C. trifascialis, took 88% of bites from A. hyacinthus. Chaetodon trifascialis defend territories encompassing one or more colonies of A. hyacinthus, and may have prevented other species such as C. lunulatus from feeding even more extensively on this coral. This study has shown that coexistence of coral-feeding butterflyfishes occurs despite an apparent lack of partitioning of prey resources. While different coral-feeding butterflyfishes were more or less selective in their use of different coral prey, virtually all species fed predominantly on A. hyacinthus or P. damicornis.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

15.
Fricke  H.  Meischner  D. 《Marine Biology》1985,88(2):175-187
Depth distribution, zonation pattern and growth morphology of 17 hermatypic and 4 ahermatypic coral species were investigated at eight different locations along the Bermuda platform with the research submersible GEO and by SCUBA diving in August–September 1983. Hermatypic coral growth occurs to a depth of 50 to 70 m, with a single Montastrea cavernosa growing at 78 m. Dominant forms in shallow-water coral communities are Diploria sp. and Porites astreoides, while M. cavernosa, Agaricia fragilis and Scolymia cubensis occur in deep-water associations below 60 m. Vertical visibilities (up to 178 m) and distribution of the photosynthetically active radiation revealed good light penetration values (1% level at about 100 m depth), which should favour hermatypic coral growth to a much greater depth than it actually occurs. Nor should the prevailing temperatures limit the depth of coral growth. Most deep-water hermatypes observed grow on remnants of Pleistocene reefs down to about 60 m. The vast areas of large massed rhodolith nodules below 50 to 60 m are unsuitable bottom for coral colonisation. Macroalgae growth seems to be the strongest factor controlling coral growth in deep water. Bermuda stony corals have a low growth form diversity. Various intraspecific morphs may occur at the same as well as at different depths, with a general trend towards flatter shapes with depth. Comparison with a similar study on Red Sea corals suggests that annual distribution of radiant energy on the most northern Atlantic reefs of Bermuda may be responsible for the occurrence of flat and cuplike growth forms in relatively shallow water, and for the shallower depth limits of hermatypic growth.  相似文献   

16.
Gorgonians are passive suspension feeders, contributing significantly to the energy flow of littoral ecosystems. More than in active suspension feeders (such as bivalves, ascidians and sponges) their prey capture is affected by spatial and temporal prey distribution and water movement. Corallium rubrum is a characteristic gorgonian of Mediterranean sublittoral hard bottom communities. This study found a high variability in the annual cycle of prey capture rate, prey size and ingested biomass, compared to other Mediterranean gorgonians. Detrital particulate organic matter (POM) was found throughout the year in the polyp guts and constituted the main proportion of the diet (25–44%). Crustacean fragments and copepods (14–46%) accounted for the second major proportion, while invertebrate eggs (9–15%) and phytoplankton (8–11%) constituted the smallest part of the diet. To verify the importance of detrital POM in the energy input of this precious octocoral species, in situ experiments were carried out during the winter–spring period. The results confirm the importance of detrital POM as the main source of food for C. rubrum [0.13±0.04 μg C polyp−1 h−1 (mean±SD)]. This study also compares the prey capture rates of two colony size classes and two depth strata: Within the same patch, small colonies (<6 cm height) captured significantly more prey per polyp (0.038±0.09 prey polyp−1 h−1) than larger colonies (>10 cm high) (0.026±0.097 prey polyp−1 h−1) and showed a higher proportion of polyps containing prey (17% compared to 10%). Comparing colonies of similar size (<6 cm height) revealed that the colonies situated at 40 m depth captured significantly more prey (0.038±0.09 prey polyp−1 h−1) than the ones at 20 m (0.025±0.11 prey polyp−1 h−1). One pulse of copepods was recorded that constituted 16% of all captured prey during the 15-month period studied in one of the sampled populations. The data suggest that the variability of hydrodynamic processes may have a higher influence on the feeding rate than seasonal changes in the seston composition. The carbon ingestion combined with data on the density of the exploited population results in 0.4–9.6 mg C m−2 day−1. The grazing impact of current, heavily exploited and small-sized populations is comparable to that of larger Mediterranean gorgonians, suggesting that unexploited red coral populations may have a high impact compared with other passive suspension feeders.  相似文献   

17.
Effects of sheltering fish on growth of their host corals   总被引:1,自引:0,他引:1  
Stony corals are the foundation species of tropical reefs, and their structures can harbor a diverse range of mutualist taxa that can confer important benefits, including provision of nutrients. Prominent among the associates of branching coral in the genus Pocillopora are groups of zooplanktivorous damselfishes that take refuge in the coral to avoid their predators. In field and laboratory experiments, we explored the effects of colonies of resident damselfishes on growth of their host corals. Laboratory studies revealed a positive relationship between biomass of fish and output of ammonium. In the field, levels of ammonium were significantly elevated in the water surrounding the branches of Pocillopora occupied by colonies of damselfish, particularly in time periods following active feeding by the fish. Experimental manipulation of the presence of fish on host corals during a month-long field experiment revealed that corals hosting fish grew significantly more than those that lacked fish, and coral growth was positively correlated with the biomass of resident fish. The Pocillopora colonies in the field experiment varied in the degree of openness of their branching structure, and dye studies indicated that this affected their ability to retain waterborne nutrients. Together with biomass of resident fish, colony openness explained 76% of the variation in coral growth rate during the experiment. Corals can exhibit considerable morphological variability, and mutualistic fish respond to colony architecture during habitat selection, with some species preferring more open-branched forms. This makes it likely that corals may face tradeoffs in attracting resident fish and in retaining the nutrients they provide.  相似文献   

18.
Polyps of the corallimorpharian Rhodactis rhodostoma (Ehrenberg, 1934) form aggregations that monopolise patches of space on the shallow reef flats of some Red Sea coral reefs. Some of these polyps bear specialised bulbous marginal tentacles (BMTs) where they contact cnidarian competitors. BMTs differ from the normally filiform marginal tentacles (FMTs) of R. rhodostoma, and appear to develop from them. However, their morphogenesis and long-term impacts on spatial competition with reef corals are unknown. We experimentally induced contacts between R. rhodostoma polyps and colonies of the branching stony coral Acropora eurystoma on a shallow coral reef at Eilat, northern Red Sea. During the first 24 d of contact, the A. eurystoma colonies extruded mesenterial filaments that damaged the tissues of the corallimorpharian polyps. After 18 d,>90% of R. rhodostoma individuals had developed BMTs, which resulted in a reversal in the direction of competitive damage. During the subsequent 1.5 years of observation, the corallimorpharians maintained well-developed BMTs, unilaterally damaged the tissues of A. eurystoma, and in some cases moved onto the stony coral skeletons and partially overgrew them. BMTs developed from FMTs in a series of four distinct stages, accompanied by significant changes in their morphology, cnidom, and density of nematocysts. Isolated control polyps did not develop BMTs or show any signs of damage. In contrast, corallimorpharian polyps transplanted into contact with colonies of the massive stony coral Platygyra daedalea began to develop sporadic BMTs, but were unilaterally and severely damaged by the corals, and started to disappear within 21 d, after the corals developed sweeper tentacles. We conclude that long-term outcomes of competition between R. rhodostoma and reef-building corals depend largely on the relative aggressive reach of the competitive mechanisms developed by each species. As a consequence, this corallimorpharian is an intermediate competitor in the aggressive hierarchy among Indo-Pacific reef corals. This study confirms that R. rhodostoma polyps may actively damage and overgrow some stony corals, leading to the formation of an almost continuous blanket of polyps in large patches of some shallow reef flats. Received: 15 July 1998 / Accepted: 24 March 1999  相似文献   

19.
Predation rates and prey selection of the pelagic mysid shrimp, Mysis mixta, were studied experimentally in the northern Baltic Sea in 1998 during their most intensive growth period, from June to October. Functional responses during 5 months were determined by providing the mysids with a natural zooplankton assemblage, diluted to several different concentrations. The results show that ingestion rate increased, along with mysid growth, from early summer to autumn and that saturation level was reached between 400 and 500 μg C l−1. Ingestion rates increased with increasing prey concentration, and sigmoidal curves explained mostly the variation in ingestion rates (explanatory levels of 86–97%). Prey selection was evident in June, July and August, though weaker during the latter 2 months. Selection differed between the studied months but, generally, copepods were more positively selected than cladocerans. Rotifers were the main prey during June and July, when mysids were small, while larger mysids fed on copepods and cladocerans. Of the copepods, Eurytemora affinis was a truly selected species. This study shows that mysids feed on many zooplankton taxa and that they undergo ontogenetic diet shifts. Received: 19 July 2000 / Accepted: 19 October 2000  相似文献   

20.
Paired flat plates of the hermatypic coral Montipora verrucosa from Kaneohe Bay, Oahu, Hawaii, were acclimated to photosynthetically active radiation (PAR) only and to full sunlight (PAR+UV) for several weeks in the summer of 1990. After the acclimation period, photosynthesis, both in PAR-only and PAR+UV as well as dark respiration were measured. Levels of the UV-absorbing compounds, S320, density of zooxanthellae, and chlorophyll a concentration were determined. Corals acclimated in PAR+UV had higher levels of the UV-protective compounds and lower areal zooxanthellae densities than corals acclimated in PAR-only. Chlorophyll a per unit volume of coral host and per algal cell did not differ between corals from the two acclimation treatments. Corals acclimated to PAR+UV displayed higher photosynthesis in full sunlight than corals acclimated to PAR-only, but when photosynthesis was measured in the light regime to which the corals had been acclimated, there were no differences in photosynthesis. Dark respiration was the same for corals from the two acclimation treatments regardless of the light quality immediately preceding the dark period.Contribution No. 902 HIMB  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号