首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conservation efforts to protect forested landscapes are challenged by climate projections that suggest substantial restructuring of vegetation and disturbance regimes in the future. In this regard, paleoecological records that describe ecosystem responses to past variations in climate, fire, and human activity offer critical information for assessing present landscape conditions and future landscape vulnerability. We illustrate this point drawing on 8 sites in the northwestern United States, New Zealand, Patagonia, and central and southern Europe that have undergone different levels of climate and land‐use change. These sites fall along a gradient of landscape conditions that range from nearly pristine (i.e., vegetation and disturbance shaped primarily by past climate and biophysical constraints) to highly altered (i.e., landscapes that have been intensely modified by past human activity). Position on this gradient has implications for understanding the role of natural and anthropogenic disturbance in shaping ecosystem dynamics and assessments of present biodiversity, including recognizing missing or overrepresented species. Dramatic vegetation reorganization occurred at all study sites as a result of postglacial climate variations. In nearly pristine landscapes, such as those in Yellowstone National Park, climate has remained the primary driver of ecosystem change up to the present day. In Europe, natural vegetation–climate–fire linkages were broken 6000–8000 years ago with the onset of Neolithic farming, and in New Zealand, natural linkages were first lost about 700 years ago with arrival of the Maori people. In the U.S. Northwest and Patagonia, the greatest landscape alteration occurred in the last 150 years with Euro‐American settlement. Paleoecology is sometimes the best and only tool for evaluating the degree of landscape alteration and the extent to which landscapes retain natural components. Information on landscape‐level history thus helps assess current ecological change, clarify management objectives, and define conservation strategies that seek to protect both natural and cultural elements.  相似文献   

2.
Abstract: Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process‐based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf‐area index values were lower in shrubland. This high probability of occurrence likely is related to the species’ use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.  相似文献   

3.
Climate change will require novel conservation strategies. One such tactic is a coarse‐filter approach that focuses on conserving nature's stage (CNS) rather than the actors (individual species). However, there is a temporal mismatch between the long‐term goals of conservation and the short‐term nature of most ecological studies, which leaves many assumptions untested. Paleoecology provides a valuable perspective on coarse‐filter strategies by marshaling the natural experiments of the past to contextualize extinction risk due to the emerging impacts of climate change and anthropogenic threats. We reviewed examples from the paleoecological record that highlight the strengths, opportunities, and caveats of a CNS approach. We focused on the near‐time geological past of the Quaternary, during which species were subjected to widespread changes in climate and concomitant changes in the physical environment in general. Species experienced a range of individualistic responses to these changes, including community turnover and novel associations, extinction and speciation, range shifts, changes in local richness and evenness, and both equilibrium and disequilibrium responses. Due to the dynamic nature of species responses to Quaternary climate change, a coarse‐filter strategy may be appropriate for many taxa because it can accommodate dynamic processes. However, conservationists should also consider that the persistence of landforms varies across space and time, which could have potential long‐term consequences for geodiversity and thus biodiversity.  相似文献   

4.
Quantifying the manner in which ecological communities respond during a time of decreasing precipitation is a first step in understanding how they will respond to longer-term climate change. Here we coupled analysis of interannual variability in remotely sensed data with analyses of bird and butterfly community changes in montane meadow communities of the Greater Yellowstone Ecosystem. Landsat satellite imagery was used to classify these meadows into six types along a hydrological gradient. The northern portion of the ecosystem, or Gallatin region, has smaller mean patch sizes separated by ridges of mountains, whereas the southern portion of the ecosystem, or Teton region, has much larger patches within the Jackson Hole valley. Both support a similar suite of butterfly and bird species. The Gallatin region showed more overall among-year variation in the normalized difference vegetation index (NDVI) when meadow types were pooled within regions, perhaps because the patch sizes are smaller on average. Bird and butterfly communities showed significant relationships relative to meadow type and NDVI. We identified several key species that are tightly associated with specific meadow types along the hydrological gradient. Comparing taxonomic groups, fewer birds showed specific habitat affinities than butterflies, perhaps because birds are responding to differences in habitat structure among meadow types and using the landscape at a coarser scale than the butterflies. Comparing regions, the Teton region showed higher predictability of community assemblages as compared to the Gallatin region. The Gallatin region exhibited more significant temporal trends with respect to butterflies. Butterfly communities in wet meadows showed a distinctive shift along the hydrological gradient during a drought period (1997-2000). These results imply that the larger Teton meadows will show more predictable (i.e., static) species-habitat associations over the long term, but that the smaller Gallatin meadows may be an area that will exhibit the effects of global climate change faster.  相似文献   

5.
This study focuses on potential impacts of 21st century climate change on vegetation in the Southwest United States, based on debiased and interpolated climate projections from 17 global climate models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Among these models a warming trend is universal, but projected changes in precipitation vary in sign and magnitude. Two independent methods are applied: a dynamic global vegetation model to assess changes in plant functional types and bioclimatic envelope modeling to assess changes in individual tree and shrub species and biodiversity. The former approach investigates broad responses of plant functional types to climate change, while considering competition, disturbances, and carbon fertilization, while the latter approach focuses on the response of individual plant species, and net biodiversity, to climate change. The dynamic model simulates a region-wide reduction in vegetation cover during the 21st century, with a partial replacement of evergreen trees with grasses in the mountains of Colorado and Utah, except at the highest elevations, where tree cover increases. Across southern Arizona, central New Mexico, and eastern Colorado, grass cover declines, in some cases abruptly. Due to the prevalent warming trend among all 17 climate models, vegetation cover declines in the 21st century, with the greatest vegetation losses associated with models that project a drying trend. The inclusion of the carbon fertilization effect largely ameliorates the projected vegetation loss. Based on bioclimatic envelope modeling for the 21st century, the number of tree and shrub species that are expected to experience robust declines in range likely outweighs the number of species that are expected to expand in range. Dramatic shifts in plant species richness are projected, with declines in the high-elevation evergreen forests, increases in the eastern New Mexico prairies, and a northward shift of the Sonoran Desert biodiversity maximum.  相似文献   

6.
Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone‐predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka–Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem‐wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication.  相似文献   

7.
Land use is rapidly expanding in the Greater Yellowstone Ecosystem, primarily from growth in the number of rural homes. There is a need to project possible future land use and assess impacts on nature reserves as a guide to future management. We assessed the potential biodiversity impacts of alternative future land use scenarios in the Greater Yellowstone Ecosystem. An existing regression-based simulation model was used to project three alternative scenarios of future rural home development. The spatial patterns of forecasted development were then compared to several biodiversity response variables that included cover types, species habitats, and biodiversity indices. We identified the four biodiversity responses most at risk of exurban development, designed growth management policies to protect these areas, and tested their effectiveness in two alternative future scenarios. We found that the measured biodiversity responses, including riparian habitat, elk winter range, migration corridors, and eight other land cover, habitat, and biodiversity indices, are likely to undergo substantial conversion (between 5% and 40%) to exurban development by 2020. Future habitat conversion to exurban development outside the region's nature reserves is likely to impact wildlife populations within the reserves. Existing growth management policies will provide minimal protection to biodiversity in this region. We identified specific growth management policies, including incentives to cluster future growth near towns, that can protect "at risk" habitat types without limiting overall growth in housing.  相似文献   

8.
Bonebrake TC  Deutsch CA 《Ecology》2012,93(3):449-455
Evolutionary history and physiology mediate species responses to climate change. Tropical species that do not naturally experience high temperature variability have a narrow thermal tolerance compared to similar taxa at temperate latitudes and could therefore be most vulnerable to warming. However, the thermal adaptation of a species may also be influenced by spatial temperature variations over its geographical range. Spatial climate gradients, especially from topography, may also broaden thermal tolerance and therefore act to buffer warming impacts. Here we show that for low-seasonality environments, high spatial heterogeneity in temperature correlates significantly with greater warming tolerance in insects globally. Based on this relationship, we find that climate change projections of direct physiological impacts on insect fitness highlight the vulnerability of tropical lowland areas to future warming. Thus, in addition to seasonality, spatial heterogeneity may play a critical role in thermal adaptation and climate change impacts particularly in the tropics.  相似文献   

9.
As changes in climate become more apparent, ecologists face the challenge of predicting species responses to the new conditions. Most forecasts are based on climate envelopes (CE), correlative approaches that project future distributions on the basis of the current climate often assuming some dispersal lag. One major caveat with this approach is that it ignores the complexity of factors other than climate that contribute to a species' distributional range. To overcome this limitation and to complement predictions based on CE modeling we carried out a transplant experiment of resident and potential-migrant species. Tree seedlings of 18 species were planted side by side from 2001 to 2004 at several locations in the Southern Appalachians and in the North Carolina Piedmont (U.S.A.). Growing seedlings under a large array of environmental conditions, including those forecasted for the next decades, allowed us to model seedling survival as a function of variables characteristic of each site, and from here we were able to make predictions on future seedling recruitment. In general, almost all species showed decreased survival in plots and years with lower soil moisture, including both residents and potential migrants, and in both locations, the Southern Appalachians and the Piedmont. The detrimental effects that anticipated arid conditions could have on seedling recruitment contradict some of the projections made by CE modeling, where many of the species tested are expected to increase in abundance or to expand their ranges. These results point out the importance of evaluating the potential sources of migrant species when modeling vegetation response to climate change, and considering that species adapted to the new climate and the local conditions may not be available in the surrounding regions.  相似文献   

10.
Abstract: Non‐native species can cause the loss of biological diversity (i.e., genetic, species, and ecosystem diversity) and threaten the well‐being of humans when they become invasive. In some cases, however, they can also provide conservation benefits. We examined the ways in which non‐native species currently contribute to conservation objectives. These include, for example, providing habitat or food resources to rare species, serving as functional substitutes for extinct taxa, and providing desirable ecosystem functions. We speculate that non‐native species might contribute to achieving conservation goals in the future because they may be more likely than native species to persist and provide ecosystem services in areas where climate and land use are changing rapidly and because they may evolve into new and endemic taxa. The management of non‐native species and their potential integration into conservation plans depends on how conservation goals are set in the future. A fraction of non‐native species will continue to cause biological and economic damage, and substantial uncertainty surrounds the potential future effects of all non‐native species. Nevertheless, we predict the proportion of non‐native species that are viewed as benign or even desirable will slowly increase over time as their potential contributions to society and to achieving conservation objectives become well recognized and realized.  相似文献   

11.
Abstract:  The use of a surrogate taxon in conservation planning has become questionable because recent evidence suggests that the correlation of species richness between pairs of taxa is highly variable both taxonomically and geographically. Species richness is only one measure of species diversity, however, and recent studies suggest that investigations of cross-taxon congruence should consider a broader range of assessment techniques. The cross-taxon congruence of community similarity between sites among taxa has rarely been examined and may be the most relevant measure of species diversity in the context of coarse-filter conservation strategies. We examined cross-taxon congruence patterns of species richness and community similarity (Bray-Curtis similarity) among birds, butterflies, and vascular plants in montane meadow habitats in the Greater Yellowstone Ecosystem. Although patterns of species richness (Spearman rank correlation) varied between taxa, we consistently found a positive correlation in community similarity (Mantel test) between all pair-wise comparisons of the three taxa (e.g., sites with similar bird communities also had similar butterfly communities). We suggest that the success of a surrogate taxon depends on the technique used to assess surrogacy and the specific approach to conservation planning. In the context of coarse-filter conservation, measures of community similarity may be more appropriate than measures of species richness. Furthermore, the cross-taxon congruency of community similarity in our study suggests that coarse-filter conservation may be tenable in montane meadow communities.  相似文献   

12.
Abstract: Temperatures in southwestern North America are projected to increase 3.5–4 °C over the next 60–90 years. This will precipitate ecological shifts as the ranges of species change in response to new climates. During this shift, rapid‐colonizing species should increase, whereas slow‐colonizing species will at first decrease, but eventually become reestablished in their new range. This successional process has been estimated to require from 100 to over 300 years in small areas, under a stable climate, with a nearby seed source. How much longer will it require on a continental scale, under a changing climate, without a nearby seed source? I considered this question through an examination of the response of fossil plant assemblages from the Grand Canyon, Arizona, to the most recent rapid warming of similar magnitude that occurred at the start of the Holocene, 11,700 years ago. At that time, temperatures in southwestern North America increased about 4 °C over less than a century. Grand Canyon plant species responded at different rates to this warming climate. Early‐successional species rapidly increased, whereas late‐successional species decreased. This shift persisted throughout the next 2700 years. I found two earlier, less‐extreme species shifts following rapid warming events around 14,700 and 16,800 years ago. Late‐successional species predominated only after 4000 years or more of relatively stable temperature. These results suggest the potential magnitude, duration, and nature of future ecological changes and have implications for conservation plans, especially those incorporating equilibrium assumptions or reconstituting past conditions. When these concepts are extended to include the most rapid early‐successional colonizers, they imply that the recent increases in invasive exotics may be only the most noticeable part of a new resurgence of early‐successional vegetation. Additionally, my results challenge the reliability of models of future vegetation and carbon balance that project conditions on the basis of assumptions of equilibrium within only a century.  相似文献   

13.
Erb LP  Ray C  Guralnick R 《Ecology》2011,92(9):1730-1735
Alpine species are among those most threatened by climatic shifts due to their physiological and geographic constraints. The American pika (Ochotona princeps), a small mammal found in mountainous, rocky habitats throughout much of western North America, has experienced recent population extirpations in the Great Basin linked to climatic drivers. It remains unclear whether these patterns of climate-related loss extend to other portions of the species' range. We investigated the distribution of the American pika and the climatic processes shaping this distribution within the Southern Rocky Mountain region. Results from a survey of 69 sites historically occupied by pikas indicate that only four populations have been extirpated within this region over the past few decades. Despite relatively few extirpations, low annual precipitation is implicated as a limiting factor for pika persistence in the Southern Rockies. Extirpations occurred only at sites that were consistently dry over the last century. While there was no climate change signal in our results, these data provide valuable insight into the potential future effects of climate change on O. princeps throughout its range.  相似文献   

14.
Crait JR  Ben-David M 《Ecology》2007,88(4):1040-1052
Animals that deposit aquatically derived nutrients on terrestrial landscapes link food webs and affect a variety of in situ processes. This phenomenon, however, is poorly documented in freshwater habitats, especially where species introductions have drastically changed an ecosystem's trophic structure. In this study, we used stable isotopes to document water-to-land nutrient transport by river otters (Lontra canadensis) around Yellowstone Lake, an ecosystem recently altered by nonnative species invasions. We then investigated the effects of otter fertilization on plant growth and prevalence at latrine (scent-marking) sites and evaluated how the recent changes to the lake's food web could influence these plant responses. Values of delta15N were higher on latrines compared to non-latrine sites in five of seven sample plant taxa. Additionally, latrine grasses had higher percentage N than those from non-latrines. Foliar delta15N positively related to fecal deposition rate for some plants, indicating that increased otter scent-marking led to a rise in these N values. Logistic regression models indicated that otters selected for well-shaded latrines with access to foraging. Atypical latrines, misclassified as non-latrines by the regression models, had values of delta15N similar to correctly classified latrines, suggesting that site effects alone cannot explain elevated N values at otter latrine sites. No difference in plant diversity or percent cover of N-fixing taxa occurred between latrine and nonlatrine sites, though specific genera did differ between site types. Measurements of shoot lengths indicated increased growth of some latrine currants (Ribes sp.). In Yellowstone Lake, a twofold reduction in otter numbers could result in an even greater decline in nutrient deposition at latrines, as otters may become less social in a system with decreased prey availability. Our results highlight the role of animals in linking aquatic and terrestrial habitats in inland freshwater systems and suggest that ongoing changes in the trophic structure of Yellowstone Lake could have unexpected ramifications well beyond the lake itself.  相似文献   

15.
Global warming is expected to profoundly change the characteristics of freshwater habitats. Increasing evaporation, lower oxygen concentration due to increased water temperatures and changes in precipitation pattern are likely to affect the survival and reproduction of pulmonate freshwater gastropods. Our statistical niche modelling analysis suggests that for a great proportion of the North-West European genera, the range sizes were predicted to decrease by 2,080, even if unlimited dispersal was assumed. The forecasted warming in the cooler northern ranges predicted the emergence of new suitable areas, as well as drastically reduced available habitat in the southern part of the studied region. Phylogenetic signal was inferred for one dimension of the climatic niche. Independent contrast analyses, taking into account the phylogenetic relationships between the taxa, showed a positive correlation between the genera’s climate niche width and the size of future suitable area. In summary, the results predict a profound faunal freshwater gastropod shift for Central Europe, either permitting the establishment of species currently living south of the studied region or permitting the proliferation of organisms relying on the same food resources, if dispersal abilities do not match the rate of climate change.  相似文献   

16.
Abstract: Climate‐change scenarios project significant temperature changes for most of South America. We studied the potential impacts of predicted climate‐driven change on the distribution and conservation of 26 broad‐range birds from South America Cerrado biome (a savanna that also encompass tracts of grasslands and forests). We used 12 temperature or precipitation‐related bioclimatic variables, nine niche modeling techniques, three general circulation models, and two climate scenarios (for 2030, 2065, 2099) for each species to model distribution ranges. To reach a consensus scenario, we used an ensemble‐forecasting approach to obtain an average distribution for each species at each time interval. We estimated the range extent and shift of each species. Changes in range size varied across species and according to habitat dependency; future predicted range extent was negatively correlated with current predicted range extent in all scenarios. Evolution of range size under full or null dispersal scenarios varied among species from a 5% increase to an 80% decrease. The mean expected range shifts under null and full‐dispersal scenarios were 175 and 200 km, respectively (range 15–399 km), and the shift was usually toward southeastern Brazil. We predicted larger range contractions and longer range shifts for forest‐ and grassland‐dependent species than for savanna‐dependent birds. A negative correlation between current range extent and predicted range loss revealed that geographically restricted species may face stronger threat and become even rarer. The predicted southeasterly direction of range changes is cause for concern because ranges are predicted to shift to the most developed and populated region of Brazil. Also, southeastern Brazil is the least likely region to contain significant dispersal corridors, to allow expansion of Cerrado vegetation types, or to accommodate creation of new reserves.  相似文献   

17.
The expansion of protected areas is a critical component of strategies to promote the continued existence of biodiversity (i.e., life at all levels of biological organization) as climate changes, but scientific, social, and economic uncertainties associated with climate change are some of the major obstacles preventing such expansion. New models of climate change and species distribution and new methods of conservation planning now make it possible to explore the uncertainties associated with climate changes and species responses. Yet few reliable estimates of the costs of expanding protected areas and methods for determining these costs exist, largely because of the many (and uncertain) determinants of these costs. We developed a cost-accounting model to estimate the range in costs of various options for expanding protected areas and to explore the variables that drive these costs. Model development was informed by an existing plan to expand protected areas in the Cape Floristic Region of South Africa to address species conservation under a scenario of climate change. The 50-year present value of total costs varied from US$260 million ($1077/ha) for an off-reserve option that involves agreements with landowners and no compensation of forgone production and associated revenue to $1020 million ($4228/ha) for an on-reserve option that involves land acquisition and protection. The costs of acquiring land or compensating landowners for forgone production and development opportunities were the major drivers of the total costs across all options because most of the area identified in the protected-area expansion plan consisted of urban and high-quality agricultural lands. Total costs were also affected by changes in protected area extent and discount rate. Model-generated outputs such as these may be useful for informing implementation strategies and the allocation of future efforts in monitoring, data collection, and model development.  相似文献   

18.
Diamond SE  Frame AM  Martin RA  Buckley LB 《Ecology》2011,92(5):1005-1012
How do species' traits help identify which species will respond most strongly to future climate change? We examine the relationship between species' traits and phenology in a well-established model system for climate change, the U.K. Butterfly Monitoring Scheme (UKBMS). Most resident U.K. butterfly species have significantly advanced their dates of first appearance during the past 30 years. We show that species with narrower larval diet breadth and more advanced overwintering stages have experienced relatively greater advances in their date of first appearance. In addition, species with smaller range sizes have experienced greater phenological advancement. Our results demonstrate that species' traits can be important predictors of responses to climate change, and they suggest that further investigation of the mechanisms by which these traits influence phenology may aid in understanding species' responses to current and future climate change.  相似文献   

19.
Climate change could alter the population growth of dominant species, leading to profound effects on community structure and ecosystem dynamics. Understanding the links between historical variation in climate and population vital rates (survival, growth, recruitment) is one way to predict the impact of future climate change. Using a unique, long-term data set from eastern Idaho, USA, we parameterized integral projection models (IPMs) for Pseudoroegneria spicata, Hesperostipa comata, and Artemisia tripartita to identify the demographic rates and climate variables most important for population growth. We described survival, growth, and recruitment as a function of genet size using mixed-effect regression models that incorporated climate variables. Elasticites for the survival + growth portion of the kernel were larger than the recruitment portion for all three species, with survival + growth accounting for 87-95% of the total elasticity. The genet sizes with the highest elasticity values in each species were very close to the genet size threshold where survival approached 100%. We found strong effects of climate on the population growth rate of two of our three species. In H. comata, a 1% decrease in previous year's precipitation would lead to a 0.6% decrease in population growth. In A. tripartita, a 1% increase in summer temperature would result in a 1.3% increase in population growth. In both H. comata and A. tripartita, climate influenced population growth by affecting genet growth more than survival or recruitment. Late-winter snow was the most important climate variable for P. spicata, but its effect on population growth was smaller than the climate effects we found in H. comata or A. tripartita. For all three species, demographic responses lagged climate by at least one year. Our analysis indicates that understanding climate effects on genet growth may be crucial for anticipating future changes in the structure and function of sagebrush steppe vegetation.  相似文献   

20.
Abstract: We provide a cross‐taxon and historical analysis of what makes tropical forest species vulnerable to extinction. Several traits have been important for species survival in the recent and distant geological past, including seed dormancy and vegetative growth in plants, small body size in mammals, and vagility in insects. For major past catastrophes, such as the five mass extinction events, large range size and vagility or dispersal were key to species survival. Traits that make some species more vulnerable to extinction are consistent across time scales. Terrestrial organisms, particularly animals, are more extinction prone than marine organisms. Plants that persist through dramatic changes often reproduce vegetatively and possess mechanisms of die back. Synergistic interactions between current anthropogenic threats, such as logging, fire, hunting, pests and diseases, and climate change are frequent. Rising temperatures threaten all organisms, perhaps particularly tropical organisms adapted to small temperature ranges and isolated by distance from suitable future climates. Mutualist species and trophic specialists may also be more threatened because of such range‐shift gaps. Phylogenetically specialized groups may be collectively more prone to extinction than generalists. Characterization of tropical forest species’ vulnerability to anthropogenic change is constrained by complex interactions among threats and by both taxonomic and ecological impediments, including gross undersampling of biotas and poor understanding of the spatial patterns of taxa at all scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号