首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Wang  Jun  Yang  Le  Li  Xiaolong  Luo  Zhu  Li  Jianjun  Xia  Xiaosong  Linghu  Changkai 《Journal of Polymers and the Environment》2022,30(3):1127-1140

Incompatible polypropylene (PP) and polyethylene (PE) are difficult to separate in mixed recycling streams such as waste plastic packaging, which makes polyolefin mixtures unsuitable for high-quality products. In this work, based on the free radical branching reaction, a co-branching reaction of isotactic polypropylene (iPP) and high-density polyethylene (HDPE) blends was carried out in the presence of the peroxide, free radical regulator and multifunctional acrylate monomer, and a star-like long-chain branching (LCB) copolymer was obtained. The effect of in situ compatibilization on the structures and mechanical properties of iPP/HDPE was investigated, and the compatibilization mechanism was discussed. Results showed that the mechanical properties of the modified blends were largely improved, and efficient in-situ compatibilization of iPP and HDPE could be taken place in a wide process window. Moreover, the sizes of the dispersed phase in the modified blends were clearly decreased, and the interfacial thickness increased. Compared with the pure iPP/HDPE blend, the initial crystallization temperature of iPP in the modified iPP/HDPE blend was increased, and long branched chains of the LCB copolymers were physically entangled with the chemical identical homopolymers or even participated in the crystallization of iPP and HDPE. Thanks to the in situ compatibilization strategy, the compatibility of iPP/HDPE was significantly improved.

  相似文献   

2.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption.  相似文献   

3.
With growing interest in the use of eco-friendly composite materials, biodegradable polymers and composites from renewable resources are gaining popularity for use in commercial applications. However, the long-term performance of these composites and the effect of compatibilization on their weathering characteristics are unknown. In this study, five types of biodegradable biopolymer/wood fiber (WF) composites were compatibilized with maleic anhydride (MA), and the effect of accelerated UV weathering on their performance was evaluated against composites without MA and neat biopolymers. The composite samples were prepared with 30 wt% wood fiber and one of the five biodegradable biobased polymer: poly(lactic) acid (PLA), polyhydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Bioflex (PLA blend), or Solanyl (starch based). Neat and composite samples were UV weathered for 2000 h (hours), and characterized for morphological, physical, thermal, and mechanical properties before and after weathering. Compared to composites without MA, composites containing MA grafted polymers exhibited improved properties due to increased interfacial adhesion between the fiber and matrix. Upon accelerated weathering, thermal and mechanical properties of 70% of the samples substantially decreased. Surfaces of all the samples were roughened, and drastic color changes were observed. Water absorption of all the samples increased after weathering exposure. Even though the compatibilization is shown to improve composite properties before weathering, it did not affect weathering of samples, as there were no considerable differences in properties exhibited by the composites with MA and without MA after weathering. The results suggest that compatibilization improves properties of biodegradable biobased composites without affecting its UV degradation properties.  相似文献   

4.

Polylactic acid (PLA) and thermoplastic starch (TPS) are biodegradable polymers of biological origin, and the mixture of these polymers has been studied due to the desirable mechanical properties of PLA and the low processing cost of TPS. However, the TPS/PLA combination is thermodynamically immiscible due to the poor interfacial interaction between the hydrophilic starch granules and the hydrophobic PLA. To overcome these limitations, researchers studied the modification, processing, and properties of the mixtures as a strategy to increase the compatibility between phases. This review highlights recent developments, current results, and trends in the field of TPS/PLA-based compounds during the last two decades, with the main focus of improving the adhesion between the two components. The TPS/PLA blends were classified as plasticized, compatible, reinforced and with nanocomposites. This article presents, based on published research, TPS/PLA combinations, considering different methods with significant improvements in mechanical properties, with promising developments for applications in food packaging and biomedicine.

  相似文献   

5.
Reactively Compatibilized Cellulosic Polylactide Microcomposites   总被引:3,自引:0,他引:3  
Poly(lactic acid) (PLA) possesses a suite of favorable material properties that are enabling its penetration into diverse markets (e.g., as packaging material or textile fibers). In order to increase the range of applications for this material, it is necessary to modify its properties and for certain applications, reduce its cost. The introduction of fibers into a polymeric matrix is an established route towards property enhancement provided good dispersion and intimate interfacial adhesion can be achieved. In addition, cellulosic microfibers are obtainable at low to moderate cost. In this study, reactive compatibilization of cellulosic fibers with PLA is pursued. Hydroxyl groups available on the surface of cellulosic fibers are used to initiate lactide polymerization. Various processing strategies are investigated: (1) blending preformed PLA with the fiber material, (2) through a one-step process in which lactide is polymerized in the presence of the fibers alone, or (3) reactive compatibilization in the presence of preformed high molecular weight polymer. The results show that materials prepared by simultaneous introduction of lactide and preformed high molecular PLA at the beginning of the reaction possess superior mechanical properties compared to composites made by either purely mechanical mixing or solely polymerization of lactide in the presence of fibers. The modulus of materials containing 25% fibers which are prepared by reactive compatibilization of 30% preformed PLA and 70% lactide (30/70 P/L) improves by 53% compared to the homopolymer, whereas 36% reinforcement can be achieved upon purely mechanical mixing. A further increase to 35% fiber loading leads to a reduction in modulus due to an excess in initiating groups. The same trend was observed in systems containing 65% preformed PLA and 35% lactide (65/35 P/L) with an overall achievable reinforcement that was slightly lower.  相似文献   

6.
Methylenediphenyl diisocyanate was found to improve the interfacial interaction between poly(lactic acid)(PLA) and granular starch. The objective of this research was to study the effect of starch moisture content on the interfacial interaction of an equal-weight blend of wheat starch and PLA containing 0.5% methylenediphenyl diisocyanate by weight. Starch moisture (10% to 20%) had a negative effect on the interfacial binding between starch and PLA. The tensile strength and elongation of the blend both decreased as starch moisture content increased. At 20% moisture level, the starch granules embedded in the PLA matrix were observed to be swollen, resulting in poor strength properties and high water absorption by the blend.  相似文献   

7.
A new route to prepare poly(lactic acid) (PLA)/thermoplastic starch (TPS) blends is described in this work using poly(ethylene glycol) (PEG), a non-toxic polymer, as a compatibilizer. The influence of PEG on the morphology and properties of PLA/TPS blends was studied. The blends were processed using a twin-screw micro-compounder and a micro-injector. The morphologies were analyzed by scanning and transmission electron microscopies and the material properties were evaluated by dynamic-mechanical, differential scanning calorimetry, thermogravimetric analysis and mechanical tests. PLA/TPS blends presented large TPS phase size distribution and low adhesion between phases which was responsible for the lower elastic modulus of this blend when compared to pure PLA. The addition of PEG resulted in the increase of PLA crystallization, due to its plasticizing effect, and improvement of the interfacial interaction between TPS and PLA matrix. Results show that incorporation of PEG increased the impact strength of the ternary blend and that the elastic modulus remained similar to the PLA/TPS blend.  相似文献   

8.
The biodegradability of polylactide (PLA) and gelatinized starches (GS) blend films in the presence of compatibilizer was investigated under controlled soil burial conditions. Various contents (0–40 wt%) of corn and tapioca starches were added as fillers; whereas, different amounts of methylenediphenyl diisocyanate (MDI) (0–2.5 wt%) and 10 wt% based on PLA content of polyethylene glycol 400 (PEG400) were used as a compatibilizer and a plasticizer, respectively. The biodegradation process was followed by measuring changes in the physical appearance, weight loss, morphological studies, and tensile properties of the blend films. The results showed that the presence of small amount of MDI significantly increased the tensile properties of the blends compared with the uncompatibilized blends. This is attributed to an improvement of the interfacial interaction between PLA and GS phases, as evidenced by the morphological results. For soil burial testing, PLA/GS films with lower levels (1.25 wt%) of MDI had less degradation; in contrast, at high level of MDI, their changes of physical appearance and weight loss tended to increase. These effects are in agreement with their water absorption results. Furthermore, biodegradation rates of the films were enhanced with increasing starch contents, while mechanical performances were decreased.  相似文献   

9.
Modified polycaprolactone was synthesized by melt reaction of PCL and reactive monomers such as glycidyl methacrylate (GMA) and maleic anhydride (MAH) in the presence of benzoyl peroxide in Brabender mixer. MAH showed a different grafting phenomenon compared to GMA. The reaction mechanism was discussed with different reactive monomers. Reactive blends of the PCL-g-GMA and the gelatinized starch with glycerin were prepared and their mechanical properties and biodegradabilities were investigated. Reactive blends of PCL-g-GMA and starch showed well-dispersed starch domain in the matrix and better mechanical strength than the unmodified PCL/starch blend. However, the reaction between PCL-g-GMA and starch induced a crosslinking during the reactive blending and this crosslinking in the blend lowered the biodegradation of the blend during the composting test. The biodegradability was investigated by the weight loss and surface morphology change of the blend in the composting medium.  相似文献   

10.
Natural rubber grafted with poly(vinyl acetate) copolymer (NR-g-PVAc) was synthesized by emulsion polymerization. Three graft copolymers were prepared with different PVAc contents: 1 % (G1), 5 % (G5) and 12 % (G12). Poly(lactic acid) (PLA) was melt blended with natural rubber (NR) and/or NR-g-PVAc in a twin screw extruder. The blends contained 10–20 wt% rubber. The notched Izod impact strength and tensile properties were determined from the compression molded specimens. The effect of NR mastication on the mechanical properties of the PLA/NR/NR-g-PVAc blend was evaluated. Characterization by DMTA and DSC showed an enhancement in miscibility of the PLA/NR-g-PVAc blend. The temperature of the maximum tan δ of the PLA decreased with increasing PVAc content in the graft copolymer, i.e., from 71 °C (pure PLA) to 63 °C (the blend containing 10 % G12). The increase in miscibility brought about a reduction in the rubber particle diameter. These changes were attributed to the enhancement of toughness and ductility of PLA after blending with NR-g-PVAc. Therefore, NR-g-PVAc could be used as a toughening agent of PLA and as a compatibilizer of the PLA/NR blend. NR mastication was an efficient method for increasing the toughness and ductility of the blends which depended on the blend composition and the number of mastications.  相似文献   

11.
Poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) are biodegradable polyesters and can be blended by twin-screw extrusion. Epoxy-functional styrene acrylic copolymer (ESA) was used as reactive agent for PLA/PBAT blends and the mechanical properties, phase morphology, thermal properties, melt properties, and melt rheological behaviors of the blends were investigated. During thermal extrusion, ESA was mainly a chain extender for the PLA matrix but had no evident reaction with PBAT. The great improvement in the toughness of PLA based blends was achieved by the addition of PBAT of no less than 15 wt% and that of ESA of no more than 0.5 wt%. Although SEM micrographs and the reduced deviation of the terminal slope of G′ and G″ indicated better compatibility and adhesion between the two phases, the blend with ESA was still a two-phase system as indicated in DSC curves. Rheological results reveal that the addition of ESA increased the storage modulus (G′), loss modulus (G″) and complex viscosity of the blend at nearly all frequencies. The melt strength and melt elasticity of the blend are improved by addition of ESA.  相似文献   

12.
In attempt to enhance the compatibility of NR in PLA matrix, and furthermore to enhance mechanical properties of PLA, PLA/NR blends with strong interaction were prepared in Haake internal mixer, using dicumyl peroxide (DCP) as cross-linker. The effects of dicumyl peroxide on morphology, thermal properties, mechanical properties and rheological properties of PLA and PLA/NR blends were studied. The results indicated that dicumyl peroxide could increase the compatibility of poly(lactic acid) and natural rubber. With small amount of dicumyl peroxide, the effect on NR toughening PLA was enhanced and the tensile toughness of PLA/NR blends was improved. When the DCP content was up to 0.2 wt%, the PLA/NR blend reached the maximum elongation at break (26.21 %) which was 2.5 times of that of neat PLA (the elongation at break of neat PLA was 10.7 %). Meanwhile, with introducing 2 wt% DCP into PLA/NR blend, the maximum Charpy impact strength (7.36 kJ/m2) could be achieved which was 1.8 times of that of neat PLA (4.18 kJ/m2). Moreover, adding adequate amount of DCP could improve the processing properties of blends: the viscosity of PLA/NR blend decreased significantly and the lowest viscosity of the blends could be achieved when the DCP content was 0.5 wt%.  相似文献   

13.
Blends based on different ratios of starch (35–20%) and plasticizer (sugar; 0–15%) keeping the amount of poly(vinyl alcohol) (PVA) constant, were prepared in the form of thin films by casting solutions. The effects of gamma-irradiation on thermal, mechanical, and morphological properties were investigated. The studies of mechanical properties showed improved tensile strength (TS) (9.61 MPa) and elongation at break (EB) (409%) of the starch-PVA-sugar blend film containing 10% sugar. The mechanical testing of the irradiated film (irradiated at 200 Krad radiation dose) showed higher TS but lower EB than that of the non-radiated film. FTIR spectroscopy studies supported the molecular interactions among starch, PVA, and sugar in the blend films, that was improved by irradiation. Thermal properties of the film were also improved due to irradiation and confirmed by thermo-mechanical analysis (TMA), differential thermo-gravimetric analysis (DTG), differential thermal analysis (DTA), and thermo-gravimetric analysis (TGA). Surface of the films were examined by scanning electron microscope (SEM) image that supported the evidence of crosslinking obtained after gamma irradiation on the film. The water up-take and degradation test in soil of the film were also evaluated. In this study, sugar acted as a good plasticizing agent in starch/PVA blend films, which was significantly improved by gamma radiation and the prepared starch-PVA-sugar blend film could be used as biodegradable packaging materials.  相似文献   

14.
Poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) blend nanocomposites were prepared using melt blending technique followed by compression moulding. The blend nanocomposites were prepared with a variation of PBAT loading along with maleic anhydride and benzoyl peroxide ranging from 5 to 20 wt% along with two different commercially available nanoclays cloisite 93A and cloisite 30B (C30B) at 3 wt% loading. The maleic anhydride and benzoyl peroxide were used during the melt blending of the blend nanocomposites as a compatibilizer and as an accelerator respectively. Maleic anhydride used to enhance the compatibility of the PLA/PBAT blend and as well as the uniform adhesion of the nanoclays with them. The properties and characterizations of PLA matrix and the PLA/PBAT blend nanocomposites have been studied. The tensile strength, % elongation and impact strength increased with the preparation of PLA/PBAT blend nanocomposites as compared with PLA matrix. PLA/PBAT/C30B blend nanocomposites exhibited optimum tensile strength at 15 wt% of PBAT loading. Differential scanning calorimetry and thermogravimetric analysis also showed improved thermal properties as compared with virgin PLA. The wide angle X-ray diffraction studies indicated an increase in d-spacing in PLA/PBAT/C30B blend nanocomposite thus revealing intercalated morphology.  相似文献   

15.
Recycled poly(ethylene terephthalate) (R-PET) was blended with 15–30 wt% of styrene–ethylene/butylenes–styrene (SEBS) block copolymer and maleic anhydride grafted SEBS (SEBS-g-MA). Effects of nucleation and toughening of the elastomers were evaluated systematically by study of morphology, crystallization, thermal and mechanical properties of the blend. The addition of 30 wt% SEBS promoted the formation of co-continuous structure of the blend and caused the fracture mechanism to change from strain softening to strain hardening. Addition of SEBS-g-MA resulted in significant modification of phase morphology and obviously improved the impact strength. The compatibilization reaction of PET with SEBS-g-MA accelerated the crystallization of PET and increased the crystallinity. The shifts in glass transition temperature of PET towards that of SEBS-g-MA and the higher modulus for R-PET/SEBS-g-MA (70/30) blend found by DMA are also indications of better interactions under the conditions of compatibilization and interpenetrating structure.  相似文献   

16.
The blends of polylactic acid plasticized with acetyl tributyl citrate (P-PLA) and thermoplastic wheat starch (TPS) were prepared by a co-rotating twin screw extruder and the effect of maleic anhydride grafted PLA (PLA-g-MA) content as reactive compatibilizer on blends compatibility through morphological, rheological and tensile properties of the blends was investigated. Considerable improvement in properties of P-PLA/TPS (70/30 w/w) blend with incorporating the optimum PLA-g-MA content of 4 phr was achieved as this blend exhibited better morphological and rheological properties with an increase by 158 and 276% in tensile strength and elongation at break, respectively, compared to the uncompatibilized blend. Also the thermal stability and moisture sorption properties of the blends as effected by TPS content were studied. Decreasing in thermal stability and increasing in equilibrium moisture content of the blends were observed with progressively increasing of TPS content. For prediction the moisture sorption behaviour of blends with various TPS contents at different relative humidity, the moisture sorption isotherm data were modeled by GAB (Guggenheim–Anderson–de Boer) model.  相似文献   

17.
Poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) blends with different levels of chain extender were prepared and cast into films. The effect of chain extender on the mechanical, thermal and barrier properties of the films were investigated. With the inclusion of the chain extender, the compatibility and interfacial adhesion between the two polymer phases were significantly improved by a mean of forming a PLA–chain extender–PPC copolymer. Reactions between the chain extender, PLA and PPC were observed through FTIR study. SEM study also confirmed the improved compatibility and interfacial adhesion. The elongation at break of the compatibilized film with optimal amount of chain extender showed dramatic increase by up to 1940 %. DSC studies revealed that chain extender hindered the crystallization of the film which explained the decrease in both water and oxygen barrier when adding chain extender. PLA was found to be able to enhance both oxygen and water barrier of the blend as compared to neat PPC, while in the case of the blend with chain extender, oxygen and water barrier properties exhibited reduction at the beginning. However, when increasing chain extender concentration, these two barrier performance exhibited an upward trend. It was found that PLA/PPC blend showed much better oxygen barrier property than both parent polymers, which can be ascribed to the acceleration effect of PPC on the crystallization of PLA.  相似文献   

18.
Starch-based composite films have been proposed as food packaging. In this context, the study of non-conventional starch sources (sagu, Canna edulis Kerr) has worldwide special attention, because these materials can impart different properties as carbohydrate polymers. A thorough study of the matrices used (sagu starch and flour) was carried out. In the same way, thermoplastic starch (TPS)/PCL blend and thermoplastic flour (TFS)/PCL blend were obtained by melt mixing followed by compression moulding containing glycerol as plasticizer. In this study, chemical composition of the matrices and their properties were related with the properties of the developed films. Moisture content, water solubility, X-ray diffraction, thermogravimetric analysis and mechanical and microstructural properties were evaluated in the films. Taking into account the results, the sagu flour has great potential as starchy source for food packaging applications. However, concretely the flour had lower compatibility with the PCL compared to the starch/PCL blend.  相似文献   

19.
In this work, two processing aids, acetyl tri-n-butyl citrate and an alkene bis fatty amide (wax), were investigated for their effects on rheological properties, morphology, thermal transition temperatures, and mechanical properties of the poly(lactic acid) (PLA)/soy protein concentrate blends. Acetyl tri-n-butyl citrate and alkene bis fatty amide played different roles in improving the processability of the blends, with the former functioning as a plasticizer for PLA and the latter as an internal/external lubricant. The amide wax was more effective in reducing blend melt viscosity through its dual functions of internal and external lubrication. Acetyl tri-n-butyl citrate displayed a stronger effect in facilitating PLA nucleation than the amide wax. Both processing aids decreased tensile strength and modulus of the blends and increased break strain and impact strength.  相似文献   

20.
The main purpose of this study is challenging to dramatically improve the toughness of poly(lactic acid) (PLA)/starch by adding poly (ethylene glycol) (PEG) into the composites and grafting PEG molecules onto the surface of starch particles. It was found that the surface grafting of PEG onto starch induced the presence of PEG-rich regions located around the starch particles, caused by migration and aggregation of free PEG molecules. A novel interphase transition layer between PLA and starch was formed, which showed great ability for cavitation and vested large-scaled plastic deformation to PLA matrix. Further mechanical properties tests indicated the formation of interphase layer significantly increase the elongation at break from 10.2 to 254.5%, and notched impact strength from 1.56 to 2.37?kJ/m2 for PLA/PEG/starch ternary composites. The influence of PEG component, ethanol extraction and annealing was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号