首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The objective of the study is to compare different development scenarios of a black water source-separation sanitation system (BWS) that could be environmentally and economically more viable than a conventional system (CONV). Scenarios performance is evaluated using life cycle assessment and environmental life cycle costing. System boundaries include the processes related to the collection and treatment of wastewater and organic kitchen refuse collection and the recycling of by-product (digestate/sludge and biogas) produced in the treatment step. The BWS scenario that entails a vacuum toilet flow-volume reduction to 0.5 L/flush results in significantly higher performances than the ones of CONV for the climate change and resources indicators, while involving a significantly lower performance with regards to human health and a comparable cost. The BWS scenario based on digestate mass reduction with reverse osmosis and acidification prior to its transport to farmland achieves comparable performances to the ones of CONV for all indicators. The BWS scenario with digestate treatment by means of phosphorus precipitation (struvite) and nitritation–anammox reactors gives performances that are comparable to the ones of CONV for all indicators, with the exception of climate change, for which this scenario has a significantly lower performance if the electricity is produced by hydropower. When single-pathway scenarios are combined, the multi-pathway scenarios thus created can produce results that are significantly superior to the CONV result for the climate change, resources and human health indicators although the cost remains comparable.  相似文献   

2.
In this study the methodology of life cycle assessment has been used to assess the environmental impacts of three pulverized coal fired electricity supply chains with and without carbon capture and storage (CCS) on a cradle to grave basis. The chain with CCS comprises post-combustion CO2 capture with monoethanolamine, compression, transport by pipeline and storage in a geological reservoir. The two reference chains represent sub-critical and state-of-the-art ultra supercritical pulverized coal fired electricity generation. For the three chains we have constructed a detailed greenhouse gas (GHG) balance, and disclosed environmental trade-offs and co-benefits due to CO2 capture, transport and storage. Results show that, due to CCS, the GHG emissions per kWh are reduced substantially to 243 g/kWh. This is a reduction of 78 and 71% compared to the sub-critical and state-of-the-art power plant, respectively. The removal of CO2 is partially offset by increased GHG emissions in up- and downstream processes, to a small extent (0.7 g/kWh) caused by the CCS infrastructure. An environmental co-benefit is expected following from the deeper reduction of hydrogen fluoride and hydrogen chloride emissions. Most notable environmental trade-offs are the increase in human toxicity, ozone layer depletion and fresh water ecotoxicity potential for which the CCS chain is outperformed by both other chains. The state-of-the-art power plant without CCS also shows a better score for the eutrophication, acidification and photochemical oxidation potential despite the deeper reduction of SOx and NOx in the CCS power plant. These reductions are offset by increased emissions in the life cycle due to the energy penalty and a factor five increase in NH3 emissions.  相似文献   

3.
Life Cycle Impact Assessment (LCIA) and Risk Assessment (RA) employ different approaches to evaluate toxic impact potential for their own general applications. LCIA is often used to evaluate toxicity potentials for corporate environmental management and RA is often used to evaluate a risk score for environmental policy in government. This study evaluates the cancer, non-cancer, and ecotoxicity potentials and risk scores of chemicals and industry sectors in the United States on the basis of the LCIA- and RA-based tools developed by U.S. EPA, and compares the priority screening of toxic chemicals and industry sectors identified with each method to examine whether the LCIA- and RA-based results lead to the same prioritization schemes. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) is applied as an LCIA-based screening approach with a focus on air and water emissions, and the Risk-Screening Environmental Indicator (RSEI) is applied in equivalent fashion as an RA-based screening approach. The U.S. Toxic Release Inventory is used as the dataset for this analysis, because of its general applicability to a comprehensive list of chemical substances and industry sectors. Overall, the TRACI and RSEI results do not agree with each other in part due to the unavailability of characterization factors and toxic scores for select substances, but primarily because of their different evaluation approaches. Therefore, TRACI and RSEI should be used together both to support a more comprehensive and robust approach to screening of chemicals for environmental management and policy and to highlight substances that are found to be of concern from both perspectives.  相似文献   

4.
Construction and building industry is in dire need for developing sustainability assessment frameworks that can evaluate and integrate related environmental and socioeconomic impacts. This paper discusses an analytic hierarchy process (AHP) based sustainability evaluation framework for mid-rise residential buildings based on a broad range of environmental and socioeconomic criteria. A cradle to grave life cycle assessment technique was applied to identify, classify, and assess triple bottom line (TBL) sustainability performance indicators of buildings. Then, the AHP was applied to aggregate the impacts into a unified sustainability index. The framework is demonstrated through a case study to investigate two six storey structural systems (i.e. concrete and wood) in Vancouver, Canada. The results of this paper show that the environmental performance of a building in Canada, even in regions with milder weather such as Vancouver, is highly dependent on service life energy, rather than structural materials.  相似文献   

5.
This study presents the results of a comparative life cycle assessment (LCA) on the energy requirements and greenhouse gas (GHG) emission implications of recycling construction and demolition (C&D) rubble and container glass in Cape Town, South Africa. Cape Town is a medium sized city in a developing country with a growing population and a rising middle class, two factors that are resulting in increased generation of solid waste. The City is constrained in terms of landfill space and competing demands for municipal resources.The LCA assessment was based on locally gathered data, supplemented with ecoinvent life cycle inventory data modified to the local context. The results indicated that recycling container glass instead of landfilling can achieve an energy savings of 27% and a GHG emissions savings of 37%, with a net savings still being achieved even if collection practices are varied. The C&D waste results, however, showed net savings only for certain recycling strategies. Recycling C&D waste can avoid up to 90% of the energy and GHG emissions of landfilling when processed and reused onsite but, due to great dependence on haulage distances, a net reduction of energy use and GHG emissions could not be confidently discerned for offsite recycling. It was also found that recycling glass achieves significantly greater savings of energy and emissions than recycling an equivalent mass of C&D waste.The study demonstrated that LCA provides an important tool to inform decisions on supporting recycling activities where resources are limited. It also confirmed other researchers’ observations that strict adherence to the waste management hierarchy will not always result in the best environmental outcome, and that more nuanced analysis is required. The study found that the desirability of recycling from an energy and climate perspective cannot be predicted on the basis of whether such recycling conserves a non-renewable material. However, recycling that replaces a virgin product from an energy-intensive production process appears to be more robustly beneficial than recycling that replaces a product with little embodied energy. Particular caution is needed when applying the waste management hierarchy to the latter situations.  相似文献   

6.
The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing on global warming potentials. The consequence of choosing a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate was studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved biomass, in order to study the importance of the system boundary choices. For recycling, the choice of virgin paper manufacturing data is most important, but the results show that also the impacts from the reprocessing technologies fluctuate greatly. For the overall results the choice of the technology data is of importance when comparing recycling including virgin paper substitution with incineration including energy substitution. Combining an environmentally high or low performing recycling technology with an environmentally high or low performing incineration technology can give quite different results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system to include substitution of fossil fuel energy by production of energy from the saved biomass associated with recycling will give a completely different result. In this case recycling is always more beneficial than incineration, thus increased recycling is desirable. Expanding the system to include forestry was shown to have a minor effect on the results. As assessments are often performed with a set choice of data and a set recycling rate, it is questionable how useful the results from this kind of LCA are for a policy maker. The high significance of the system boundary choices stresses the importance of scientific discussion on how to best address system analysis of recycling, for paper and other recyclable materials.  相似文献   

7.
The human population is rising and the availability of terrestrial land and its resources are finite and, perhaps, not sufficient to deliver enough food, energy, materials and space. Thus, it is important to (further) explore and exploit the marine environment which covers no less than 71% of the earth's surface. The marine environment is very complex but can roughty be divided into two systems: natural (e.g. wild fishing) and human-made (e.g. artificial islands). In this study, characterization factors (CF) for natural and human-made marine systems were calculated in order to be able to assess the environmental impact of occupying marine surfaces, which was not possible so far in life cycle assessment. When accounting for natural resources while occupying one of these systems, it is important to consider the primary resources that are actually deprived from nature, which differs between the natural and human-made marine systems.In natural systems, the extracted biomass was accounted for through its exergy content, which is the maximum quantity of work that the system can execute in its environment. Reference flows for marine fish, seaweeds, crustaceans and mollusks were proposed and their correlated CF was calculated. For human-made systems, the deprived land resource is, in fact, the occupied area of the marine surface. Based on potential marine net primary production data (NPP), exergy based spatial and temporal CFs for ocean areal occupation were calculated. This approach was included in the Cumulative Exergy Extraction from the Natural Environment (CEENE) method which makes it the first life cycle impact assessment (LCIA) method capable of analyzing the environmental impact (and more specific the resource footprint) of marine areal occupation. Furthermore, the methodology was applied to two case studies: comparing resource consumption of on- and offshore oil production, and fish and soybean meal production for fish feed applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号