首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 843 毫秒
1.
叶绿素是我国近海水质监测的主要参数之一,其浓度的遥感反演是监测水体光学特性、评价水体污染的重要指标。本研究以Landsat-8/OLI、FY-3A/MERSI和HJ-1B/CCD遥感影像为数据源,结合2016年实测的Chl a浓度和水体光谱特征,建立胶州湾Chl a浓度的半经验/半分析反演模型。研究表明:基于Landsat-8建立的反演模型,整体Pearson相关系数最高,最优模型的预测值与实测值的决定系数R2>0.86,反演效果最好,能较好的适应于胶州湾Chl a浓度的反演研究。Landsat 8最佳波段组合为:2月份Band4/Band2,R2=0.83;5月份[(Band3)-1-(Band4)-1]* Band5,R2=0.80;8月份[(Band2)-1-(Band3)-1]* Band4,R2=0.78;11月份[(Band4)-1-(Band2)-1]* Band1,R2=0.86。  相似文献   

2.
以2009~2019年HJ-1A/B卫星多光谱数据和对应日期的实测数据为数据源,通过预处理提取出各波段组合反射率并与实测叶绿素a浓度数据进行统计相关性分析,选取相关性最高的波段组合作为特征变量与2/3的实测叶绿素a浓度数据进行建模,并用剩下的1/3实测叶绿素a浓度数据进行精度验证以确定最佳遥感反演模型,最后根据最佳反演模型对2009-2019年的香港近海海域叶绿素a浓度进行反演,明晰该海域近10年的叶绿素a浓度时空变化特征.结果表明:利用HJ-1A/B卫星多光谱数据反演香港近海海域叶绿素a浓度的最佳波段组合为第3波段和第2波段比值(B3/B2),相关系数(r)为0.893;最佳反演模型为利用B3/B2构建的e指数回归模型(Chl=0.004e6.693(B3/B2)),决定系数(R2)为0.934,均方根误差(RMSE)为0.255μg/L,平均相对误差(RPD)为25%;近10年香港近海海域的叶绿素a浓度时空变化特征:空间上整体呈现“东高西低,由东向西逐渐减小”的分布特征,西部海域比东部海域平均浓度低5μg/L左右;2017年内呈“春低秋高,夏升冬降”的随季节变化特点,其中秋季最高,夏春两季次之,冬季最低.  相似文献   

3.
基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演   总被引:7,自引:0,他引:7  
叶绿素a浓度是可直接遥感反演的重要水质参数之一,常用来评价湖泊水体的富营养化程度.太湖是典型的二类水体,光学性质复杂,应用一类水体线性反演模式拟合较为片面且难以找到最佳拟合模型.BP神经网络模型具有模拟复杂非线性问题的功能.为研究高分一号卫星16m多光谱相机WFV4结合BP神经网络进行太湖叶绿素a浓度监测的可行性,实验利用GF-1 WFV4影像和实时的地面采样数据,建立了BP神经网络模型,同时采用波段比值经验模型进行对比.经精度检验,BP神经网络模型预测值与实测值之间的可决系数R2高达0.9680,而波段比值模型的R2为0.9541,且均方根误差RMSE由波段比值模型的18.7915降低为BP神经网络模型的7.6068,平均相对误差e也由波段比值模型的19.16%降低为BP神经网络模型的6.75%.结果证明,GF-1 WFV4影像应用BP神经网络模型反演太湖叶绿素a浓度较波段比值模型精度有所提高.将经过水体掩膜的GF-1 WFV4影像用于训练好的BP神经网络反演太湖叶绿素a浓度分布,结果显示,叶绿素a高浓度区集中分布在湖心区北部、竺山湾、梅梁湾区域,与之前的研究一致.本文研究结果验证了采用BP神经网络模型对GF-1 WFV4影像进行太湖叶绿素a浓度反演的可行性.  相似文献   

4.
基于2013-2018年秦皇岛海域实测遥感反射率和叶绿素a浓度数据,建立了该海域Sentinel-2MSI影像的叶绿素a浓度遥感反演模型。结果表明:443 nm、490 nm和560 nm处的等效遥感反射率比值与叶绿素a浓度相关系数普遍高于其他波段或组合,通过经典的OC3Mv6算法拟合分析,得到秦皇岛海域叶绿素a浓度遥感反演的最佳算法,R2=0.804,MAPE=40.2%,RMSE=4.73 mg/m3;利用2016年7月6日的实测叶绿素a浓度数据对Sentinel-2 MSI遥感反演结果进行了真实性检验,MAPE=35.9%,可以满足应用要求;采用2020年2月、5月、7月及10月Sentinel-2 MSI影像进行叶绿素a浓度反演,发现春、夏季秦皇岛海域叶绿素a浓度梯度变化显著,而秋、冬季叶绿素a浓度分布相对均匀,且春、夏季沿海海域叶绿素a浓度明显高于秋、冬季。  相似文献   

5.
基于TM影像的乌梁素海叶绿素a浓度反演   总被引:1,自引:1,他引:0  
首先选取预处理后乌梁素海TM影像的单波段及波段组合与实测叶绿素a浓度进行分析,发现相关性很低。然后,结合乌梁素海的水利条件和自身特点,把湖区分为两个区,发现波段组合(TM1+TM2+TM4)/TM3和TM4/TM3与叶绿素a浓度有较高的相关性。最后,选取误差较低的波段组合(TM1+TM2+TM4)/TM3建立线性模型,实时、快速地反演乌梁素海湖区叶绿素a浓度,与实地情况吻合,为乌梁素海"黄苔"预警提供理论依据。  相似文献   

6.
环境一号卫星在大型水体水环境监测与评价中具有独特的优势。为探求遥感影像在水体叶绿素a浓度反演中的应用,基于环境一号卫星CCD数据和同步实测叶绿素a浓度值,通过影像辐射定标、大气校正和几何精校正等预处理获取水体反射率,分别将单波段和不同特征波段组合的反射率与实测叶绿素a值进行皮尔逊相关分析,选取R20.8的波段组合进行建模,通过对3种波段组合反演结果对比和精度验证,发现基于CCD数据第4波段与第3波段反射率比值的二次模型具有良好的反演效果,模型预测值与实测值的最小相对误差为0.76%,平均相对误差10.99%,均方根误差为0.007 6 mg/L,明显低于实测叶绿素a浓度的平均值;最后基于该模型实现了太湖叶绿素a浓度反演,并对叶绿素a的时空分布进行了初步分析。  相似文献   

7.
广州流溪河水库叶绿素a遥感反演研究   总被引:1,自引:0,他引:1  
叶绿素a是衡量水体初级生产力和富营养化程度的一项重要指标。本研究在讨论分析反演水体叶绿素a浓度的半分析生物光学模型理论基础上,利用Landsat TM数据及中巴资源卫星02星CCD相机高分辨率数据,结合实测数据建立广州流溪河水库叶绿素a浓度的波段比值型反演模型。该模型对两个不同监测日期的叶绿素a浓度反演效果较好,拟合系数(R2)分别达到0.860和0.715,均方根误差分别为0.102μg/L和0.198μg/L。反演结果表明,流溪河水库叶绿素a浓度整体较低,均在2.0μg/L以下,空间分布在湖库区较均匀,入库支流玉溪河水域叶绿素a浓度略高于湖库区。  相似文献   

8.
太湖水域叶绿素a浓度的遥感反演研究   总被引:5,自引:0,他引:5  
利用太湖水域MODIS遥感数据的各波段反射率组合计算值,与实测的叶绿素a浓度进行相关性分析,找到相关性最好的反射率组合,建立反演太湖叶绿素a浓度的遥感模型.结果表明,利用MODIS数据可以较好地实现对太湖水域叶绿素a浓度的定量反演计算,并以MODIS数据第3、第17波段的反射率组合作为遥感指数建立了反演叶绿素a浓度的模型.第3、第17波段的波长范围分别为459nm~479nm、890nm~920nm,这一波段选择与以往使用TM数据得到的结论有所不同.  相似文献   

9.
基于2013~2021年期间秦皇岛海域遥感反射率、悬浮物浓度及叶绿素a浓度等实测数据,开展了该海域Sentinel-3 OLCI影像的悬浮物浓度遥感反演模型研究.结果表明,文献中常用的典型经验模型形式均不适用于秦皇岛海域,以490、620及708.75nm为悬浮物反演的敏感波段,以560nm为参比波段,将各敏感波段与参比波段的比值作为自变量,最终建立了适用于秦皇岛海域的Sentinel-3 OLCI四波段悬浮物浓度遥感反演模型(R2=0.69,MAPE=24.79%,RMSE=2.82mg/L);并采用2021年7月24日Sentinel-3 OLCI影像进行悬浮物浓度遥感反演产品的真实性检验,得到反演值与实测值的平均相对误差为13.24%.将上述四波段模型用于2021年1~12月秦皇岛海域的Sentinel-3 OLCI影像,反演得到月均悬浮物浓度,发现秦皇岛海域悬浮物浓度整体呈现沿岸海域高、离岸海域低,秋冬季高、春夏季低的时空变化特征;且2018~2021年秦皇岛海域悬浮物浓度的年均值逐年递减,水体越来越澄清.  相似文献   

10.
利用高光谱反演模型评估太湖水体叶绿素a浓度分布   总被引:3,自引:1,他引:2  
叶绿素a浓度是评价水体富营养化和初级生产力的一个重要参数,高光谱遥感是获取叶绿素a浓度的有效手段.为建立太湖水域叶绿素a的最佳高光谱估算模型,选取2015年5—7月共计60组同步实测高光谱数据和叶绿素a浓度数据,在地面光谱反射率和叶绿素a浓度相关性分析的基础上,使用2∶1的数据样本进行太湖水域叶绿素a的最佳高光谱估算模型的建立和验证,筛选模型分别为波段比值、三波段、荧光峰位置、峰谷距离、一阶微分、NDCI(Normalized Difference Chlorophyll Index)、峰面积、荧光峰高度、WCI(Water Chlorophyll-a Index)和四波段模型.结果表明,建模得到的四波段模型决定系数最高,峰面积模型的决定系数相对最低;四波段模型的反演精度最高,均方根误差(RMSE)为0.00376 mg·L~(-1),平均绝对误差(MAPE)为27.86%,而WCI模型的反演精度相对最低,RMSE为0.01231 mg·L~(-1),MAPE为45.11%.将反演精度最高的四波段模型应用于2015年8月3日的两景HSI(Hyperspectral Imaging Radiometer)高光谱影像数据,也得到较高精度,利用同步实测叶绿素a浓度验证的决定系数为0.7643,RMSE为0.00433 mg·L~(-1),MAPE为45.62%.在春、夏季叶绿素对水体光学特性占主导作用且叶绿素分布均匀的情景下,本研究可为太湖水域叶绿素a的高光谱反演和水环境监测提供有价值的参考,其它季节水体光谱特点的研究尚待进一步开展.  相似文献   

11.
水体富营养化及藻华暴发已成为湖泊治理中的主要问题,利用历史监测数据,采用BP神经网络对水体中叶绿素a(Chl-a)浓度进行预测,已成为藻华预警的主要手段.但该方法存在迭代速度慢、易陷入局部极值等局限性,导致产生拟合结果不优或预测误差较大等问题.利用Metropolis接受准则的全局寻优能力,将其与BP神经网络相结合构建...  相似文献   

12.
BP神经网络在再生水补给密云水库水质评价中的应用   总被引:3,自引:0,他引:3  
王倩  邹志红 《环境科学学报》2014,34(9):2413-2416
基于环境质量基本模型,将补给的再生水视为点源污染,建立了再生水补给后的湖库污染物浓度变化模型.在得到补给后主要污染物稳定浓度的基础上,建立BP神经网络模型,使用随机数发生器生成随机数据作为模型的学习样本和检验样本以满足BP模型对样本数量的需求.使用BP模型对再生水补给后的水质进行评价,评价结果证明了再生水补给的可行性与相对安全性.  相似文献   

13.
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake.  相似文献   

14.
为研究贵州黔中水利枢纽工程水源地平寨水库的水化学特征及成因,利用变异系数、空间插值和因子分析等方法分析研究区2017-2018年40组库水水样测试结果,并探讨了平寨水库水化学特征的时空分布及水化学演化过程的主要控制因素。研究结果表明:1)库水主要的阴阳离子为HCO3-和Ca2+,水化学类型主要为HCO3--Ca2+型。2)除SO42-和NO3-外,枯水期离子浓度大于丰水期;空间上,离子浓度整体表现为三岔河干流大于各支流,且水公河浓度最小。3)Gibbs图分析表明,研究区水库水化学特征主要受到岩石风化的影响,因子分析表明,对水库水化学组成的影响程度表现为:水岩作用 > 人类活动 > 大气降水。建议对于黔中水利枢纽水源地平寨水库的保护必须控制生活污水的排放、化肥农药的使用以及加强周边区域工矿企业的管理。  相似文献   

15.
局部水域的藻类异常增殖现象逐渐成为千岛湖面临的水环境保护难题. 构建以数据驱动的水华预测模型,实现对重点水域叶绿素a (Chla)浓度短期动态变化的预测,是快速应对潜在水华风险的有效手段之一. 鉴于NARX神经网络在预测非平稳时间序列动态特征方面的优势,以千岛湖国控监测断面小金山2016—2019年Chla的高频时间序列作为研究对象,对Chla剖面数据进行沿深平均、缺失值插补后,分别以连续3 d和连续7 d的Chla浓度作为输入,构建了基于NARX神经网络的藻类预测模型,用于预测未来0.5~7 d Chla浓度的变化,探讨了相关参数设置、训练及评价方法,并针对不同的预见期分析了模型性能. 结果表明:① 模型预测性能稳定,预测值与实测值相关系数保持在0.8~0.9之间,均方误差在15~30之间. ②随着预见期的变化,模型性能不同. 其中,在未来0.5~4 d的预测中,使用连续3 d的 Chla浓度作为输入的预测效果较好;在未来4.5~7 d的预测中,使用连续7 d的Chla浓度作为输入的预测效果较好. 研究显示,该模型可以较为准确地预测未来0.5~7 d的Chla浓度,可为构建以数据驱动的千岛湖水华监测预警系统提供科学依据.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号