首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
为控制污水管道产生的有害气体对管道设施和周围环境造成的不利影响,通过搭建带有搅拌的反应器系统,来模拟实际污水管道,探究脉冲通气对污水管道内有害气体的控制效果及生物群落变化的影响。研究表明:脉冲通气能有效控制有害气体的产生,在水流速度为0.2 m·s~(-1)时,硫化氢(H_2S)、甲烷(CH_4)、一氧化碳(CO)的抑效果最好,其抑制率分别为98.7%,44.4%,92.5%;在脉冲通气作用下,古菌群落的生物多样性不断减少,细菌群落的生物多样性不断增加;同时,脉冲通气也改变了生物群落结构,其群落结构变化与气相参数的变化是相一致的。  相似文献   

2.
为提高生物滴滤塔净化气体中H_2S的运行效率,分别采用活性炭、陶粒、聚丙烯空心球3种填料,以排硫硫杆菌(Tiobacillus thioparus)接种生物滴滤塔处理含H_2S气体,研究了进气H_2S浓度、气体停留时间等参数对生物滴滤塔去除H_2S性能的影响。结果表明,采用排硫硫杆菌接种生物滴滤塔处理含H_2S气体,挂膜速度快,系统运行稳定且脱硫效率高。3种填料中活性炭填料脱硫效果最好,固定进气H_2S浓度1.5 g·m~(-3),停留时间高于23 s时,H_2S去除率可以达到94.4%以上,H_2S去除负荷达333.16 g·(m~3·h)~(-1)。动力学分析表明,活性炭生物滴滤塔最大H_2S去除负荷为666.7 g·(m~3·h)~(-1),饱和常数为0.87 g·m~(-3)。随着实验的进行,填料塔的压力降会因为生物膜的生长和单质硫的积累逐渐增加,严重时导致气体完全堵塞,需要进行鼓泡反冲以除去积累的单质硫。  相似文献   

3.
城市污水处理厂恶臭污染源调查与研究   总被引:7,自引:0,他引:7  
以H2S和NH3为主要监测指标,对广州一大型生活污水处理厂主要恶臭源H2S、NH3的排放浓度进行了8个月的连续监测.结果表明,该污水厂恶臭成分H:S的排放浓度为0.01-22 mg/m',NH,排放浓度为0~0.67 mg/m3.同时,污水厂各处理单元由于其功能和运行条件不同,所产生的恶臭气体成分也不完全一样,在污水进水区段恶臭污染物以H2S为主,其中格栅井H2S浓度最高.其中沉砂池、格栅和污泥浓缩池的H2S、NH3排放浓度呈夏秋季节高、冬春季节低的特征,与季节变化的气温有明显的相关性.对恶臭排放影响因素的研究表明,污水水温越低则H2S和NH3的排放浓度越低,此外,降雨可以显著降低污水处理厂恶臭污染物的排放浓度.  相似文献   

4.
天津市纪庄子污水处理厂恶臭气体排放研究   总被引:3,自引:0,他引:3  
2011年,在天津市纪庄子污水处理厂内采集空气样品,并对其中恶臭气体的浓度、扩散模式、影响范围及污水厂内各主要构筑物间相关系数进行了分析研究。结果表明,污水处理厂格栅处恶臭气体浓度最高,为4.31 ng/mL,其中95.61%为H2S气体,其他构筑物恶臭气体浓度范围为0.09~0.32 ng/mL,恶臭气体浓度较前处理工艺相比有大幅度减少;各主要构筑物排放的恶臭气体符合高斯气体扩散模式,恶臭影响范围为厂界外100 m以内;格栅处恶臭气体的排放对于厂界处恶臭气体浓度的贡献度最大,为42.68%;格栅、初沉池、脱水机房、二沉池之间的相关度在90%以上。  相似文献   

5.
研究了pH对生物滤池处理含H2S和NH3混合恶臭气体的影响,以及不同pH下的物质转化情况和去除机制。结果表明,不同pH下,生物滤池对H2S和NH3的去除率是不同的。在强酸性(pH为2左右)和中性(pH为7左右)条件下,H2S均有较好的去除效果,这分别归于嗜酸性硫细菌和非嗜酸性硫细菌的生物降解作用。低pH下,NH3的去除归于化学中和作用;中性(pH为7左右)条件下,NH3有较高的去除率,主要依靠生物硝化作用。通过考察pH对生物滤池处理效果的影响,确定了生物滤池处理含H2S和NH3混合恶臭气体的pH控制条件和去除机制,为恶臭气体生物处理工艺的选择提供依据。  相似文献   

6.
城市排水管道生物膜及底泥中存在着复杂的菌群及其相互作用,可产生H_2S、CH_4等多种有毒有害气体,造成管道腐蚀,危害城市管网安全。在总结2种关键微生物菌群——硫酸盐还原菌(SRB)与产甲烷菌(MA)的分类、代谢机理及两者在产气反应过程中的底物竞争关系的基础上,阐述了SRB、MA在排水管道微环境中的分层分布特征,重点梳理与分析了SRB、MA的调控因素及方法。由于SRB、MA对于不同抑制剂的耐受性不同,且处于生物膜内部的菌群会受到传质阻力的保护作用,因此,控制H_2S时须增加抑制剂的单次投加量,对于CH_4,则须延长抑制剂的投加周期。研究为今后开展管网废气控制提供了微生物学理论基础,并为城市管网防腐及维护提供了具体的调控依据。  相似文献   

7.
为探究蚯蚓粪净化硫化氢恶臭气体的可行性及其微生物群落结构的构成,以蚯蚓粪为生物反应器的载体,考察了蚯蚓粪去除硫化氢的性能;采用Miseq高通量测序技术分析蚯蚓粪中微生物种群结构变化。结果表明,当进气浓度小于350 mg·m~(-3),气体流量为0.25~0.35 m~3·h~(-1)时,H_2S去除率可达100%。随着进气流量的增大,H_2S去除率下降。微生物种群结果揭示蚯蚓粪生物反应器的不同空间层次上呈现出明显的空间分布多样性差异。蚯蚓粪生物反应器的主要降解硫化氢的优势菌为:变形菌门(44%~85%),γ-变形菌纲(18%~76%);产黄杆菌属(6.1%~62.5%)、盐生硫杆菌属(2.8%~5.2%)、硫杆菌属(0.7%~6.9%)等优势菌属。通过分析可知,蚯蚓粪能高效处理硫化氢恶臭气体,蚯蚓粪中丰富且多样的微生物群落对其处理效果有着重要的作用。  相似文献   

8.
本期刊登了西安建筑科技大学环境与市政工程学院卢金锁教授撰写的综述《应用硝酸盐控制排水管道中H_2S气体释放的研究进展》。为配合文章宣传,特将卢金锁教授课题组详细介绍放在封二封三供读者了解。  相似文献   

9.
选用聚丙烯中空纤维膜接触器为吸收器,Na OH水溶液为吸收剂,考察膜吸收法对H_2S的脱除效果。结果表明:正流程、逆流方式的脱硫效果优于反流程、并流;随着液体流量和液体浓度的增加,H_2S脱除率和总传质系数随之增大,但随气体流量的增加,H_2S脱除率减小,总传质系数增大;正交实验得出吸收剂浓度0.2 mol·L~(-1)、进气流量1 L·min-1、液体流量2.2 L·min-1为较优的膜吸收参数,此条件下H_2S脱除率可达99.94%,且各因子对H_2S脱除率的影响次序为:进气流量液体流量吸收剂浓度。  相似文献   

10.
考察了添加不同剂量氢氧化铁对于污水污泥处置过程中的恶臭污染的控制效果。结果表明,在厌氧发酵32d时,添加0.05%、0.10%、0.25%(质量分数,下同)的氢氧化铁分别使污水污泥处理中硫化氢的平均去除率(与未添加氢氧化铁相比)达到81.3%、93.7%、97.5%;氢氧化铁的添加对污水污泥厌氧发酵中氨气的释放量没有明显影响。利用冷扩散连续萃取法考察了厌氧发酵过程中污水污泥中硫的形态分布,发现在氢氧化铁的作用下生成了硫化亚铁、二硫化亚铁、单质硫,从而降低了硫化氢的释放速率,有效控制了污水污泥厌氧发酵中的恶臭。氢氧化铁是一种可以用于污泥处理的高效除臭剂。  相似文献   

11.
针对含重金属废渣污染程度高且难处理问题,采用典型硫化物、磷酸盐、CaO、MgO以及配伍药剂对锌(Zn)、镉(Cd)复合污染强酸性废渣进行稳定化,利用水浸提法(HJ 557-2010)评估稳定化效果,以GB 8978-1996最高允许排放浓度为达标限值,达到安全处置的目的。结果表明,单一磷酸盐和硫化物中,同摩尔添加比条件下,Na_3PO_4·12H_2O对Zn和Cd的稳定效果最好,Na_2S·9H_2O对砷(As)稳定效果最好,Zn、Cd、As和铜(Cu)4种金属元素同时达标时的综合稳定效应(η)依次为Na_2S·9H_2O(96.36%)(NH_4)_2HPO_4(87.42%)Na_3PO_4·12H_2O(82.26%)。单一MgO或CaO与组合剂的综合稳定效应顺序依次为0.4%MgO0.4%CaO(0.4%CaO+0.61%Na_2S·9H_2O)(0.4%CaO+0.32%(NH_4)_2HPO_4)1.2%(Na_2S·9H_2O∶(NH_4)_2HPO_4∶Na_3PO_4·12H_2O=2∶1∶3)。MgO、 Na_3PO_4·12H_2O、硫钙组合为优选稳定剂。研究结果可为国内含重金属废渣的高效稳定化处理提供参考。  相似文献   

12.
为比较不同生物填料用于城市污水提升泵站除臭的性能,建立4组不同填料的生物滴滤塔(BTF)中试装置,并考察其对污水提升泵站中以H_2S为主的市政臭气的去除效果。结果表明,在进气风量为180 m~3·h~(-1),H_2S进气浓度控制在7 500~8 500μg·m-3条件下,竹炭在吸附阶段和挂膜阶段对H_2S去除效果均最佳;竹炭生物滴滤塔挂膜速度最快,只需1~2周就可以完成挂膜,H_2S主要集中在塔底填料层500 mm位置以下被降解,塔顶出气浓度稳定在(30±2)μg·m~(-3),压降稳定在(78.7±0.5)Pa,滤出液中SO_4~(2-)浓度最高达到117.04 mg·L~(-1),塔内pH为2.0~3.0,降解H_2S的微生物为嗜酸性菌。  相似文献   

13.
随着污水处理厂规模的不断扩大,污泥产量持续增加。虽然“重水轻泥”现象已有所改变,但污泥处理处置技术仍面临各种挑战。污泥处理处置过程中的恶臭污染会对周围环境和人群健康造成不利影响,极易引发民众投诉,是提高污泥处理效率、实现污泥资源化利用的难点之一。污泥释放的恶臭物质组分复杂,且影响污泥恶臭释放的因素较多,目前针对污泥处理处置过程中恶臭产生机制和释放规律的研究尚不深入,导致污泥控臭除臭处理的效果仍不理想。因此,在归纳总结污泥常见恶臭物质及其产生来源的基础上,详细阐述了不同处理处置方式下污泥的恶臭污染特征与产生机制,从源头减排、过程控制、末端治理、排放管理4个方面评述了污泥恶臭减排控制措施的原理和发展前景,讨论了污泥恶臭污染防治的复杂性和挑战,以期为污泥恶臭污染防控提供参考。  相似文献   

14.
污水管道危害气体分布模型的建立对管道的维护管理具有重要意义。以SewerX模型为基础,将硫酸盐还原作为产生CO的主要生化过程,并入污水管道总生化反应体系,扩展SewerX模型,建立了污水管道内CO、H_2S、CH_4的浓度分布应用模型。将其应用到某市长度为4 100 m污水管道,管道危害气体浓度模拟结果与实测结果比对发现,浓度变化趋势一致,相关系数达到0.99以上,表明扩展模型具有实际应用价值。在一定设计流量下,可选择不同污水管道水力参数,应用扩展模型分析表明,合理选择参数可降低污水管道危害气体浓度。研究为污水管道内危害性气体浓度的预测提供参考。  相似文献   

15.
为探讨活性炭纤维(ACF)去除恶臭气体H2S的性能,采用过渡金属浸渍改性ACF吸附H2S,揭示出改性ACF前后吸附H2S的性能差异及浸渍剂的浓度和种类对ACF吸附性能的影响。结果表明,通过过渡金属改性后的ACF吸附性能有显著提高,对H2S吸附是物理吸附和化学吸附共同作用的结果,改性后的ACF硫容量大小依次为:5%硝酸铜...  相似文献   

16.
排水管道中硫酸盐还原菌(SRB)代谢产生的S~(2-)会导致H_2S气体释放和管道腐蚀等问题,从而增加管道的维修费用,且威胁工人和居民的身体健康。抑制管道内S~(2-)生成的措施以投加化学药物为主。在可投加的化学药物中,硝酸盐因易于应用、抑制效果较好、副作用小而被广泛应用和研究。围绕硝酸盐抑制S~(2-)产生的原理、效能与影响因素、硝酸盐的消耗规律、硝酸盐对微生物群落的影响等4个方面,综述了应用硝酸盐控制S~(2-)的研究进展,并根据研究成果和目前存在的问题提出未来的研究方向。  相似文献   

17.
复合生物滤池处理H2S和NH3的挂膜与工艺条件   总被引:3,自引:1,他引:3  
采用复合生物滤池(生物滴滤池 生物过滤池)处理H2S和NH3组成的混合恶臭气体,填料分别为经表面改性的天然斜发沸石和木屑.实验研究了该工艺的驯化挂膜情况和主要工艺条件,结果表明,天然斜发沸石和木屑改性后,驯化挂膜周期为10~14 d,比文献中颗粒活性炭挂膜缩短14~18 d.复合生物滤池的最佳工艺条件为:高度120 cm,循环液流量4.56 L/h.同时,生物滴滤池处理水溶性好的NH3气体效果较生物过滤池好,而生物过滤池处理水溶性差的H2S气体较生物滴滤池好.因此,复合生物滤池可用于处理不同水溶性的混合恶臭气体.  相似文献   

18.
为探讨活性炭纤维(ACF)去除恶臭气体H2S的性能,采用过渡金属浸渍改性ACF吸附H2S,揭示出改性ACF前后吸附H2S的性能差异及浸渍剂的浓度和种类对ACF吸附性能的影响。结果表明,通过过渡金属改性后的ACF吸附性能有显著提高,对H2S吸附是物理吸附和化学吸附共同作用的结果,改性后的ACF硫容量大小依次为:5%硝酸铜改性ACF〉5%硝酸钴改性ACF〉5%硝酸锰改性ACF。不同浓度浸渍剂改性后的ACF吸附H2S性能有所不同,硫容量呈现出随着浓度升高先增大后减小的趋势。不同浸渍剂改性后的ACF吸附穿透曲线也不同,穿透时间依次为:TCu-ACF〉TCo-ACF〉TMn-ACF。混合金属溶液改性ACF吸附H2S,5%硝酸铜-3%硝酸钴溶液改性ACF吸附性能最佳,硫容量可达166.7 mg/g;而5%硝酸铜-3%硝酸钴-1%硝酸锰溶液改性的ACF效果最差,硫容量仅为83.3 mg/g。  相似文献   

19.
利用微波热解城市污水污泥是实现污泥无害化、减量化和资源化的有效出路之一,但热解过程中产生的恶臭气体(如H2S等)也会对大气环境造成严重的影响.以微波热解城市污水污泥10 min所收集的气体为研究对象,研究了热解终温、污泥含水率、升温速率及矿物催化剂种类4个因素对热解过程中H2S产量的影响.结果表明,随着热解终温的升高,城市污水污泥微波热解过程中的H2S产量逐渐上升,800℃时H2S产量为5.86 mg/g(以干污泥计,下同);含水率在50%~80%时,随着含水率的增加,城市污水污泥微波热解过程中的H2S产量逐渐上升,当含水率增至90%时,污泥出现了泥水分层现象,致使后续热解反应无法进行,故没有H2S产生;升温速率越快,热解反应的活化能越高,反应不易进行,H2S产量降低;添加矿物催化剂能有效固硫,且雷尼镍基催化剂的效果更好,热解终温为800℃时的H2S产量为4.15 mg/g,较不添加矿物催化剂时降低约30%;可通过铜铁吸收法和活性炭吸附两步工艺对热解产生的H2S加以吸收处理,处理后的H2S排放浓度满足《恶臭污染物排放标准》(GB 14554-93)中的厂界一级标准限值.  相似文献   

20.
为了考察生物法治理污水处理场恶臭气体的实验效果,本研究采用生物滴滤、生物过滤和生物洗涤3种方法对某中石化公司化纤污水处理场4个恶臭气体挥发严重的污水池(生活污水提升池、氧化池、事故池和调节池)进行恶臭治理。实验结果表明,待生物塔稳定运行后,改变处理气量由0.1 m~3·h-1增大到0.2 m~3·h-1,相应的停留时间(EBRT)由172 s缩短到86 s,生物滴滤塔对甲醇、乙醇、环己烷和间-二甲苯这4种污染物的去除效率分别提升至96.80%、100.00%、92.15%和99.68%。此外,3台生物塔对于外界气温变化的适应性良好,但生物滴滤塔的压降始终未检出。根据小试实验结果,该化纤污水处理场恶臭的有效治理可以选用生物滴滤技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号