首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对对苯二甲酸(TA)水污染问题,通过浸渍法制备CuO-Y_2O_3/TS-1催化剂,利用XRD、SEM、FT-IR、XRF等手段表征催化剂结构、形貌及骨架结构;构建非均相体系催化臭氧氧化降解对苯二甲酸(TA),考察催化剂的催化性能。结果表明:当Cu(NO_3)_2·3H_2O和Y(NO_3)_3·6H_2O浸渍液浓度均为0.5 mg·L~(-1)、臭氧通入量为6.3mg·min~(-1)、催化剂投加量为1.0 g和pH=9.0时,反应30 min后,TA降解率高达99.8%。经5次循环后,TA降解率仍稳定在98.2%。进一步研究表明,CuO-Y_2O_3/TS-1催化臭氧降解TA实验符合一级反应动力学方程。  相似文献   

2.
不同地区的奶牛养殖废水水质具有地域性。在南方地区,常规处理工艺出水COD和色度普遍偏高,臭氧催化氧化是一种非常有潜力的技术。采用优化的浸渍焙烧的制备方法,以γ-Al_2O_3为载体,制备了Mn-FeCe/γ-Al_2O_3催化剂,并对其性状进行了表征。将该催化剂用于实际奶牛养殖废水一级好氧池出水的臭氧氧化中,结果表明:经含锰、铁和铈化合物的前驱体浸渍液浸渍并进行焙烧方法得到的Mn-Fe-Ce/γ-Al_2O_3催化剂对奶牛养殖废水有较好的催化性能;在臭氧投加量为12.5 mg·(L·min)~(-1),催化剂投加量为60 g,反应20 min的条件下,COD去除率由使用γ-Al_2O_3时的20.4%提高到48.9%,单独使用臭氧时仅为13.8%;色度去除率可达95%;BOD_5/COD达到0.54。臭氧催化氧化不仅可以去除COD和色度,而且有效改善了可生化性,为氧化出水继续使用生化法创造了条件。添加TBA作为HO·的淬灭剂实验结果表明,HO·在体系中起主要作用。研究结果可为奶牛养殖废水处理提供新的技术方法。  相似文献   

3.
马栋  段锋 《环境工程学报》2020,14(4):984-992
针对煤化工高盐废水中有机物难降解问题,采用浸渍-煅烧法制备了负载有活性金属氧化物的活性氧化铝型催化剂,探索催化剂的制备工艺和反应操作条件对废水COD去除率的影响。结果表明:活性氧化铝载体催化性能优于陶粒,活性氧化铝负载Cu、Mn、Ni的催化活性较高,将2种活性组分进行组合制得的MnO_xNiO_x/γ-Al_2O_3催化剂,在经过60 min的臭氧催化氧化后,COD的去除率可达51.3%;利用BET、SEM-EDS、XRD对催化剂进行了表征和分析,Mn、Ni成功负载到活性氧化铝表面和孔隙内,2种元素负载量摩尔比约为2:1,且主要以氧化物形式存在;通过计算臭氧利用效率,发现MnO_x-NiO_x/γ-Al_2O_3臭氧催化氧化的_η值低于单独的臭氧氧化,这意味着通过MnO_x-NiO_x/γ-Ak_2O_3催化剂可以有效地将臭氧分解成活性氧;通过优化臭氧和催化剂投加量后发现,在臭氧为350 mg·(L·h)~(-1)、催化剂投加量为100 g·L~(-1)废水中,反应180 min后,COD去除率可达到72.3%;在连续进行4 h的臭氧催化氧化实验后,MnO_x-NiO_x/γ-Al_2O_3稳定性和重复利用性均较好,COD去除率能维持在约42%,锰、镍离子的溶出量均小于0.5 mg·L~(-1)。以上研究结果可为高效的臭氧催化体系在煤化工高盐废水处理领域的应用提供参考。  相似文献   

4.
采用浸渍—煅烧法制备CuO/γ-Al_2O_3催化剂,并用其催化双氧水处理聚乙烯醇(PVA)废水,对比了不同煅烧温度下CuO/γ-Al_2O_3的催化性能以及催化剂投加量、双氧水投加量、PVA初始质量分数对PVA去除率的影响。结果表明,煅烧温度为450℃时得到的CuO/γ-Al_2O_3催化性能最好,增加CuO/γ-Al_2O_3和双氧水的投加量均有助于降低PVA降解产物黏均分子量,而PVA初始质量分数越高,PVA降解产物的黏均分子量越高。当PVA初始质量分数为1.0%,双氧水投加量为60 mL/L,CuO/γ-Al_2O_3投加量为1.0g/L,反应温度为60℃,溶液初始pH=3时,反应2h后PVA去除率达90%以上,PVA降解产物的黏均分子量从100 773降至3 194,下降了近97%,CuO/γ-Al_2O_3的催化性能随着重复使用次数的增加有一定下降。  相似文献   

5.
以甲烷为还原剂的选择性催化脱硝技术(SCR-CH_4)是一种很有潜力的新的脱硝方法,但催化剂的催化活性比较低。为了提高催化剂的活性以及抗水能力,可使用Fe对Al_2O_3负载的Ga_2O_3催化剂进行改性。采用共沉淀法,制备了xFe/Ga_2O_3-Al_2O_3催化剂,在固定床反应器中测试其选择性催化CH_4还原NO的性能。使用XRD、N_2吸附脱附、XPS、H_2-TPR、Py-IR等方法进行表征。结果表明:经过Fe改性后的催化剂提高了中高温的催化活性,提高了催化剂的N_2选择性,并改善了催化剂的抗水特性;5Fe/Ga_2O_3-Al_2O_3催化剂在500℃、富氧条件下,达到76%的NO转化率和100%的N_2选择性;在5%水蒸气条件下,5Fe/Ga_2O_3-Al_2O_3在500℃仍保持60%以上的NO转化率。N_2吸附脱附结果显示,引入Fe后,催化剂保持了原有比表面积,并且大大增加了催化剂孔径,可提高催化剂抗水能力。XPS与UV-vis显示,5Fe/Ga_2O_3-Al_2O_3具有高含量的游离态Fe~(3+),可提高催化剂的中高温活性。H2-TPR结果显示,Fe的引入提高了催化剂氧化还原能力,增强了原有Ga_2O_3-Al_2O_3中高温的还原活性。Py-FT-IR结果显示,催化剂表面同时存在Lewis酸和Br?nsted酸,铁的引入增加了催化剂表面的Lewis酸量。因此,Fe修饰Ga_2O_3-Al_2O_3是提高Ga_2O_3-Al_2O_3催化剂的SCR-CH_4脱硝性能的有效方法。  相似文献   

6.
采用浸渍法制备了Mn2O3/γ-Al2O3催化剂,在超临界水中催化氧化降解1,5-萘二磺酸,探索了催化剂Mn2O3活性组分负载量、催化剂空速和反应溶液pH对Mn2O3/γ-Al2O3催化剂活性的影响。结果表明:Mn2O3/γ-Al2O3的催化活性在一定范围内随Mn2O3活性组分负载量的增加而提高;在一定范围内,Mn2O3/γ-Al2O3空速越小,模拟废水的COD去除率越高;Mn2O3/γ-Al2O3催化活性在反应溶液呈酸性情况下比碱性时高。  相似文献   

7.
采用常温浸渍法制备催化剂Cu_xFe_(1-x)@γ-Al_2O_3,并用于陶瓷印花废水的催化湿式氧化处理,考察组分构成对催化剂Cu_xFe_(1-x)@γ-Al_2O_3活性和稳定性的影响。结果表明:在4种样品Cu0.5Fe0.5@γ-Al_2O_3,Cu@γ-Al_2O_3,Fe@γ-Al_2O_3和γ-Al_2O_3中,Cu0.5Fe0.5@γ-Al_2O_3的催化活性和稳定性最高。催化剂Cu0.5Fe0.5@γ-Al_2O_3中的Fe促进Cu进入γ-Al_2O_3载体内部并形成稳定的固溶体Al2Cu O4,故此催化剂的硬度和稳定性最高;此催化剂应用前后的SEM图无明显的形貌变化,XRD谱图无明显的物相变化,证实了其稳定性的存在。在优化的操作条件下,催化剂Cu0.5Fe0.5@γ-Al_2O_3催化湿式氧化陶瓷印花废水的COD及色度分别为280 mg·L~(-1)、20倍,达到《污水综合排放标准》(GB 8978~(-1)996)中染料类废水的三级排放标准。  相似文献   

8.
为探讨O_3/H_2O_2体系降解水中青霉素G(PCN)的效能及其降解机理,分别考察了在降解过程中pH、O_3投加量和H_2O_2投加量对PCN和COD去除效果的影响,通过实验数据得出了PCN降解动力学方程;并采用傅里叶红外光谱和液相色谱-质谱联用分析探讨了PCN在O_3氧化过程中的中间产物变化及其降解规律。结果表明:在初始ρ(PCN)为25 mg·L~(-1)、pH=10、O_3投加量为1.48_(g·)L~(-1)、H_2O_2投加量为7.84 mmol·L~(-1)、温度为20℃的条件下,反应10 min后PCN可全部被降解,反应3h后COD的去除率达到71.9%;O_3的反应级数为0.697 3,在降解过程中,O_3初始浓度对反应速率的影响最大;反应活化能为E_a=27.59 kJ·mol~(-1)该反应活化能较低,说明此反应容易发生;经氧化降解后,PCN的抑菌结构被破坏,并且产物中可能含有羧酸类和胺类化合物。以上研究结果对解决水体中PCN污染问题具有参考价值。  相似文献   

9.
通过共沉淀法将四氧化三铁(Fe_3O_4)纳米粒子负载于凹凸棒土(ATP)制备出兼具吸附与催化性能的非均相类芬顿催化剂ATP@Fe_3O_4。采用SEM(扫描电子显微镜)、XRD(X射线衍射)、XPS(X射线光电子能谱)、VSM(振动磁强计)等对材料的结构进行了表征分析,并研究了其对催化过硫酸盐(PS)降解四环素(TC)的效果。结果表明,ATP@Fe_3O_4复合材料是活化过硫酸盐(PS)生成硫酸根自由基(SO_4~-)强有力的催化剂,可大幅提高PS对水溶液中四环素的降解能力。当PS浓度为10 mmol·L~(-1)、ATP@Fe_3O_4投加量为1.5 g·L~(-1),其对pH=3.9的80 mg·L~(-1)四环素溶液的降解率在90 min可达98.75%。负载于ATP表面的Fe_3O_4粒子和部分溶解于水中的Fe~(2+)共同催化PS生成SO_4~-,将TC氧化为CO_2、H_2O和中间体,是ATP@Fe_3O_4/PS体系去除四环素的主要机理。以上研究结果可为催化材料的应用提供参考。  相似文献   

10.
研究了O_3/H_2O_2体系催化氧化处理抗生素废水的效果。对比了O_3/H_2O_2与O_3氧化体系对抗生素废水的处理效果,并考察和优化了反应时间、初始pH、H_2O_2投加量及O_3气体流量等因素的影响。结果表明:O_3/H_2O_2体系氧化抗生素废水的最佳运行参数为反应时间40 min、初始pH9.0、H_2O_2投加量60mg/L、O_3流量450mL/min。在最佳实验条件下,COD由102.0mg/L降低至32.5mg/L,去除率为68.1%,废水色度及浊度的去除率分别为98.8%、42.3%,综合处理效果优于O_3氧化技术。  相似文献   

11.
为了考察负载型金属氧化物催化剂对毒剂的热催化分解性能,以γ-Al_2O_3为载体,金属氧化物(Mn、Ni、Fe、Co、Cu和Ce)为活性组分,采用等体积浸渍法制备了负载型金属氧化物催化剂,对沙林毒剂模拟剂——甲基膦酸二甲酯(DMMP)进行了热催化分解评价实验,分别研究了不同反应温度、空速条件下热催化分解性能的变化规律。结果表明,在几种负载型金属氧化物催化剂中,CuO/γ-Al_2O_3表现出了最佳的防护性能。通过调控CuO负载量(1%~20%),发现5%CuO/γ-Al_2O_3具有较高的分散度和比表面积,热催化分解性能最好。磷物种的沉积造成催化剂比表面积的降低和晶体结构的破坏,是催化剂活性下降的主要原因。  相似文献   

12.
采用动态连续处理装置研究颗粒活性炭(GAC)催化H_2O_2氧化活性红X-3B染料(RRX-3B)的效能以及GAC表面吸附污染物对催化性能的影响,考察GAC与Fe~(2+)协同催化作用。研究结果表明:RRX-3B的处理效果随着流速的增加而逐渐降低;新GAC/H_2O_2体系降解效果优于单独GAC吸附与单独H_2O_2氧化,GAC重复使用存在部分失活现象使其脱色率和COD去除率下降,且表面预先吸附污染物的GAC在重复使用过程中下降更为明显;固定H_2O_2投加量为5 mmol·L~(-1),按n(Fe~(2+)):n(H_2O_2)为1:20投加Fe~(2+),GAC与Fe~(2+)联合体系能持续有效使RRX-3B氧化脱色,重复使用4次后脱色率仍可达99.65%,GAC和Fe~(2+)之间存在协同催化H_2O_2降解RRX-3B的作用。GAC表面附着的Fe~(2+)能够加强催化作用,且有效延长其使用寿命。  相似文献   

13.
采用H_2O_2/Fe(Ⅲ)/柠檬酸类Fenton体系和CaO_2/Fe(Ⅲ)/柠檬酸类Fenton体系修复土壤石油污染,考察了氧化剂种类、氧化剂投加量、 Fe(Ⅲ)浓度和柠檬酸浓度对柴油降解效果的影响,并进一步研究比较了CaO_2/Fe(Ⅲ)/柠檬酸和H_2O_2/Fe(Ⅲ)/柠檬酸2种修复方式对土壤原著微生物群落变化及豌豆植株生长所带来的生态毒性效应。单因素实验结果表明:在其他条件相同的情况下,CaO_2类Fenton降解柴油效果优于H_2O_2类Fenton降解效果;柴油降解率随着氧化剂投加量、Fe(Ⅲ)和柠檬酸浓度的增大呈现先增后降的趋势。当CaO_2浓度为166.67 mmol·L~(-1)、Fe(Ⅲ)浓度为27.78 mmol·L~(-1)、柠檬酸浓度为27.78 mmol·L~(-1)时,反应24 h后,土壤中柴油降解率达到44.14%。生态毒性实验表明:CaO_2类Fenton处理后土壤微生物群落的丰富度和多样性指数均有所提高,H_2O_2类Fenton处理后均有所降低,2种处理方式均在不同程度上改变了土壤微生物群落的优势菌门构成;CaO_2及H_2O_2类Fenton处理均抑制了豌豆植株的生长,发芽率、植株干重、株高、叶绿素含量等测试指标均下降,其中H_2O_2类Fenton处理的抑制效果更为明显。进一步分析可知,CaO_2类Fenton处理技术比H_2O_2类Fenton处理技术更适用于石油污染土壤修复。  相似文献   

14.
通过Cu(NO_3)_2·3H_2O对螯合树脂D851进行沉淀改性,采用SEM观察、EDS分析、傅里叶变换红外谱图分析对改性前后螯合树脂进行了表征;研究了改性前后螯合树脂在不同反应体系对双酚A的降解效果及环境因素对CuO_x/D851催化臭氧氧化双酚A性能的影响;探讨了改性螯合树脂催化臭氧化降解双酚A的机理。结果表明:Cu(NO_3)_2·3H2_O对螯合树脂D851改性后,螯合树脂的表面形态,铜离子含量都有所改变;通过正交实验得出CuOx/D851树脂催化剂的最佳制备工艺是pH为8、活性组分浓度为337.5 mmol·L~(-1)、负载温度为70℃、反应时间为10 h;单因素法研究表明,在最佳条件臭氧投加量为8.4 mg·L~(-1)、催化剂投加量为0.6 g·L~(-1)、废水进样流量为4 mL·min~(-1)、双酚A初始浓度为10 mg·L~(-1)、初始pH为7,双酚A的降解率可达86.71%;在改性螯合树脂催化臭氧化体系中,改性后螯合树脂主要通过羟基自由基-直接臭氧氧化协同作用极大地提高了对BPA的降解率。  相似文献   

15.
以水热法制备了BiVO_4光催化剂,并用X射线衍射和扫描电镜对其进行表征。在模拟太阳光照射下,以布洛芬为目标污染物,考察了BiVO_4联合H_2O_2或K_2S_2O_8工艺对布洛芬的光催化降解效果,得出了H_2O_2或K_2S_2O_8的最佳投加量。通过淬灭实验,研究了光催化联合体系降解布洛芬的机制。X射线衍射谱图表明所合成的BiVO_4光催化剂为纯的单斜晶相,扫描电镜结果表明制备的粉末形貌单一,且呈现微球状。加入H_2O_2或K_2S_2O_8后,一定程度上促进了BiVO_4光催化降解布洛芬的效率,H_2O_2和K_2S_2O_8的最佳投加量分别为3.0 mmol·L~(-1)和1.5 g·L~(-1)。BiVO_4/H_2O_2/hν体系和BiVO_4/K_2S_2O_8/hν体系降解水中布洛芬主要是基于·OH自由基的氧化作用。通过对比2个体系中·OH和O~(·-)_2对布洛芬降解速率的贡献,发现K_2S_2O_8对BiVO_4光催化体系的促进作用远远大于H_2O_2对该体系的促进作用。  相似文献   

16.
研究了微波辐射下,以负载于沸石上的三氧化二铋为催化剂,以双氧水为氧化剂的催化氧化体系处理硝基苯工艺。通过单因素实验法,从反应催化剂负载量、pH、双氧水用量、微波功率、反应时间、催化剂用量等方面初步考察了硝基苯在该体系中的催化氧化效果。在氧化铋负载量3%(质量比),pH=2,2 mL 30%双氧水,火力为中火,催化剂投加量为0.7 g,反应2 m in,对降解过程所得的中间产物和终产物进行了分析。结果表明,该体系对硝基苯的去除率能够达到99.2%,COD去除率为73.91%。  相似文献   

17.
采用浸渍法制备了Mn2O3/γ-Al2O3催化剂,在超临界水中催化氯化降解1,5-萘二磺酸,探索了催化剂Mn2O3活性组分负载量、催化剂空速和反应溶液pH对Mn2O3/γ-Al2O3催化剂活性的影响.结果表明:Mn2O3/γ-Al2O3的催化活性在一定范围内随Mn2O3活性组分负载量的增加而提高;在一定范围内,Mn2O3/γ-Al2O3空速越小,模拟废水的COD去除率越高;Mn2O3/γ-Al2O3催化活性在反应溶液呈酸性情况下比碱性时高.  相似文献   

18.
研究CuO/γ-Al_2O_3非均相过氧化氢催化氧化苯酚废水的各种影响因素与动力学规律,结果表明:(1)反应存在最佳pH及过氧化氢加入量(即pH为4~5、过氧化氢加入量为0.097 1mol/L);温度对苯酚转化速率影响很大,温度升高,苯酚转化速率加快。(2)动力学研究得到CuO/γ-Al_2O_3非均相过氧化氢催化氧化体系的模型方程,同时得到该反应的活化能为91.84kJ/mol。  相似文献   

19.
采用共沉淀法制备了一系列不同铬铈负载量和铬铈负载比例的Cr-Ce/Al_2O_3催化剂,采用XRD、BET、NH_3-TPD以及H_2-TPR对所制得的催化剂进行表征。在空速为15 000 h~(-1)、挥发性有机物体积分数为1 500μL·L~(-1)的条件下,于固定床反应器上考察了催化剂在三氯乙烯(TCE)催化氧化降解反应中的催化活性。实验结果表明,Cr-Ce/Al_2O_3(5%,10%)系列催化剂具有较好的低温催化降解三氯乙烯活性,其中Cr-Ce/Al_2O_3(5%,10%)活性最高,在271.3℃时可将尾气中90%的三氯乙烯降解。催化剂反应800 min后活性仅有轻微下降,说明该催化剂具有较好的稳定性。此外,将该催化剂用于其他VOCs催化降解反应中同样具有较好的活性,在350℃时可以将尾气中VOCs完全降解。  相似文献   

20.
为考察Fe添加量对锰基催化剂低温选择性催化还原(SCR)烟气中NO的性能,采用湿式浸渍法制备以γ-Al_2O_3为载体,以MnOx、FeOx为活性组分的系列催化剂,通过X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)分析等手段对其进行表征。结果表明:Fe的引入对提高催化剂的SCR活性具有明显的促进作用。Fe添加量为0.04 mmol/g时制备的Mn(0.8)-Fe(0.04)/γ-Al_2O_3催化剂脱硝效率在150℃条件下即可以达到93.1%。Fe添加量为0.04mmol/g时催化剂中形成的球状结晶β-MnO_2分散最为均匀,最有利于催化反应的进行。比表面积不是影响催化剂SCR活性的决定性因素。Mn(0.8)-Fe(0.04)/γ-Al_2O_3催化剂孔径分布以2~50nm的中孔为主,活性组分也主要负载到较大的中孔中,有利于催化反应的进行。Fe的加入可以提高催化剂的抗硫性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号