首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为揭示重污染过程中多因素的综合作用,选取济南市2018年11月25日-12月4日一次长时间、高强度PM2.5污染和沙尘混合的重污染过程,利用气象资料、空气质量监测结果、激光雷达探测资料及水溶性离子在线数据,开展污染特性以及潜在污染源综合分析.结果表明:①研究期间,首要污染物为颗粒物,ρ(PM10)、ρ(PM2.5)平均值分别为294、141 μg/m3,污染较严重.②根据ρ(PM2.5)/ρ(PM10)将此次重污染过程分为4个阶段,阶段Ⅰ~Ⅳ总水溶性离子浓度分别为(107.3±35.9)(95.2±34.5)(99.0±18.2)(29.3±9.3)μg/m3,分别占ρ(PM2.5)的73.8%、56.9%、64.2%和43.2%.SOR(硫氧转化率)分别为0.47、0.42、0.55、0.25,NOR(氮氧转化率)分别为0.42、0.26、0.28、0.13,表明济南市大气中出现了显著的二次转化过程,SOR均大于NOR表明SO42-转化程度高于NO3-.NO3-/SO42-(质量浓度比)分别为2.97、1.75、1.69、1.45,表明此次污染各阶段中氮和硫的来源以移动源为主.③此次重污染过程济南市ρ(PM2.5)受本地及周边城市传输和两次沙尘过境的综合影响,主要潜在污染源有山东省本地以及江苏省北部、安徽省北部、内蒙古自治区中部和京津冀地区等区域.④近地面均压场、高湿、小风等不利气象因素是导致此次重污染过程的重要因素.研究显示,济南市此次污染过程是不利气象条件、污染物一次积累和二次转化、区域污染传输、沙尘天气等多因素综合作用的结果.   相似文献   

2.
通过实时在线监测了2018年11月27日~2019年1月15日北京市城区PM2.5、水溶性无机离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO2-、NO3-、SO42-、PO43-)、碳质组分(有机碳OC、元素碳EC)的质量浓度以及气态污染物浓度和气象要素,收集整理了近20年北京市冬季PM2.5、主要离子组分以及碳质组分浓度,分析研究了1999~2018年北京市冬季PM2.5、离子、碳质组分的变化特征,重点探讨了监测期间清洁日与两个典型重污染事件PM2.5及其组分的演变特征.结果表明:研究期间PM2.5浓度为53.5μg/m3,达到近20年北京市冬季较低值,且大气主要污染源由煤烟型污染源转变为燃煤型与机动车尾气复合型污染源.监测期间,湿度高、微弱的西南风导致重污染产生,清洁日、污染事件I与污染事件II PM2.5平均浓度分别为32.5,138.9,146.8μg/m3且不同时段PM2.5日变化趋势存在差异.各离子浓度变化为:NO3- > NH4+ > SO42- > Cl- > K+ > Ca2+ > Na+ > PO43- > F- > NO2-~Mg2+,总水溶性离子浓度为24.6μg/m3占PM2.5总浓度的46.0%,其中SNA浓度占总离子浓度的83.7%,是离子中最主要的组分.碳质组分浓度达到近二十年北京市冬季最低值,变化为:一次有机碳POC > EC > 二次有机碳SOC,OC与EC相关系数达到0.99,一次燃烧源对污染过程有较大贡献.NH4+在清洁日与污染II中富集,主要以(NH42SO4、NH4NO3和NH4Cl形式存在,在污染I中较少,仅以(NH42SO4和NH4NO3存在.在污染I和II期间,SO42-的形成昼夜均受相对湿度与NH3影响;NO3-的形成白天受O3与NH3的影响,夜间受相对湿度和NH3的影响.  相似文献   

3.
为探究云贵高原区域城市PM2.5中水溶性离子的污染特征及来源,该文选取贵阳市和遵义市作为典型城市进行PM2.5样品采集,分析样品中8种水溶性无机离子(WSIIs)的污染特征,并采用主成分-多元线性回归法(PCA-MLR)解析其来源。结果表明,研究期间贵阳市和遵义市WSIIs浓度均值分别为22.64、14.44μg/m3,呈夏季最低、冬季最高的季节变化特征。2个站点氮氧化率(NOR)平均值分别为0.15、0.12,说明NO3-二次转化不明显,且夏季NOR的值远小于0.1,表明研究区域夏季NO3-来自于一次源。硫氧化率(SOR)平均值分别为0.44、0.35,表明SO42-主要由二次反应形成。阴阳离子平衡分析表明,贵阳市春、夏、秋3个季节的PM2.5呈碱性,冬季PM2.5呈弱酸性,而遵义市全年PM2.5呈碱性,主要由SO...  相似文献   

4.
中国典型城市群PM2.5污染特征研究进展   总被引:3,自引:2,他引:3       下载免费PDF全文
为进一步梳理近年来我国城市区域大气PM2.5污染防治方面的研究成果,基于我国31个城市PM2.5污染现状,以城市群为视角,总结了京津冀城市群、长三角城市群与川渝城市群PM2.5组成与污染特征,分析了PM2.5及其含碳气溶胶、水溶性无机离子、地壳元素等的整体特征,并在城市群间进行对比分析.结果表明:①3个城市群的ρ(PM2.5)高低顺序依次为京津冀城市群>川渝城市群>长三角城市群,长距离传输使PM2.5污染成为京津冀城市群、长三角城市群与川渝城市群面临的共同问题.②3个城市群的PM2.5中均以SNA和OC为主,尽管ρ(PM2.5)水平有下降趋势,但个别污染物(如SNA)略呈上升趋势.③京津冀城市群与川渝城市群的ρ(OC)接近,并且均高于长三角城市群的80%,较高的ρ(OC)/ρ(EC)反映我国城市群普遍存在SOC污染.④各城市群PM2.5监测网(如监测时间和采样方法)发展水平迥异,...  相似文献   

5.
利用环境监测、气象常规观测、美国国家环境预报中心(NCEP)再分析等资料,采用气溶胶激光雷达和HYSPLIT模式对2018年8月1—2日发生在天津市夏季的一次重污染天气过程进行分析。结果表明:地面弱气压场、低空逆温和偏东暖湿气流的输送为此次重污染形成提供了有利条件;气溶胶激光雷达分析表明,此次污染过程存在明显的水平输送和垂直分布特征,市区PM2.5浓度升高除与水平输送有关,还与本地低空逆温造成的PM2.5积累密切相关;HYSPLIT模式后向轨迹追踪研究表明,PM2.5前期积累爬升阶段,气团主要来自偏南气流,200、500、1 000 m高度气团均有明显沉降,后期气团来向转变为较清洁的偏东暖湿气流,但同时带来大量水汽,造成天津市相对湿度的增加。此次污染过程前期是由于静稳天气形势导致PM2.5积累,后期主要是天津市各区县之间PM2.5的输送以及偏东暖湿气流输送水汽导致相对湿度的增加,污染进一步加重。  相似文献   

6.
为研究郑州冬、春季重度污染期间细颗粒物的组分特征、污染来源、气象影响因素及外来传输影响,基于本地超级站污染监测数据及相关气象要素监测数据对重污染时段进行分析,并对本地污染成因进行探讨.结果表明,2019年1—3月郑州共有426 h达到重度及以上污染水平,首要污染物均为PM2.5.重污染时段碳组分(OC+EC)共占PM2.5的14.6%,OC与EC存在显著相关性,1、2、3月的r值分别为0.72、0.89和0.91,且二者比值多介于2~4之间,表明机动车和燃煤排放是碳组分的主要来源;水溶性离子浓度排序为NO3->NH4+>SO42->Cl->K+>Ca2+>Mg2+>Na+,SNA(SO42-、NO3...  相似文献   

7.
2018年12月30日至2019年1月15日石家庄市发生了连续的灰霾天气,出现12个重污染天,首要污染物均为PM2.5.本文从污染演变、时空分布、组分分析、污染来源和气象因素等多方面展开分析探讨污染成因.结果表明,PM2.5主要成分为二次无机离子(65. 4%),主要来源为燃煤(24. 4%)和工业工艺源(23. 7%).随污染加剧SO42-占比和二次无机源贡献均大幅增加.先后受来自偏南-东南和偏西-西南方向低空气团及特殊地形、静稳高湿、近地逆温等不利气象条件影响,燃煤、工业和机动车尾气等一次源产生的污染物在太行山前快速积累,气态污染物二次转化和颗粒物吸湿增长推高PM2.5,硫酸盐暴发式增长加剧污染发生.建议重污染应急响应期间在确保各项减排措施落实到位情况下,加强二次无机组分前体物SO2、NOx及NH3排放源的管控,并重点关注SO2排放源(散煤等),同时加强市区东北方向新乐、无极、深泽、晋州...  相似文献   

8.
选取北京、石家庄和唐山作为京津冀区域典型城市,基于实地样品采集和组分分析结果,探讨PM2.5组分中二次无机水溶性离子(SNA)浓度变化特征,并利用空气质量模型模拟结果分析重污染前后京津冀地区各类污染源大气污染物排放对PM2.5和SNA质量浓度的贡献.结果显示:3个城市PM2.5质量浓度整体呈现逐年下降的趋势,多数情况下SO42-、NO3-和NH4+浓度极大值同时出现在冬季,PM2.5化学组分较为稳定.相对于常规时段,重污染期间SO42-、NO3-和NH4+质量浓度明显增加,重污染前一天SNA浓度占PM2.5比值达到最高.重污染的形成是本地源排放和外来区域传输共同作用的结果,外来源对NO3-的贡献整体高于SO42-和NH4+.交通源、居民源和工业源对PM2.5、SO42-和NO3-浓度贡献最高,NH4+主要来自居民源的排放.  相似文献   

9.
成都市城区PM2.5中二次水溶性无机离子污染特征   总被引:1,自引:1,他引:1  
李友平  周洪  张智胜  王启元  罗磊 《环境科学》2014,35(12):4439-4445
2009年4月~2010年1月在成都市城区采集131个PM2.5样品,应用离子色谱法对PM2.5中二次水溶性无机离子(NH+4、NO-3和SO2-4)含量进行分析,并探讨其污染特征.结果表明,PM2.5中NH+4、NO-3和SO2-4的平均浓度值分别为(10.4±8.6)、(19.7±14.6)和(32.8±21.8)μg·m-3,分别占PM2.5质量的(5.5±2.8)%、(11.1±3.5)%和(19.3±6.4)%,三者总和占PM2.5质量浓度的(35.9±12.7)%.PM2.5中NH+4、NO-3和SO2-4的季节变化特征明显,夏、冬两季NH+4、NO-3和SO2-4的浓度均为SO2-4>NO-3>NH+4,其总和占PM2.5质量浓度的百分比为冬(44.3%)>夏(39.4%).相关分析结果显示,NH+4、NO-3和SO2-4在成都主要以NH4HSO4、(NH4)2SO4和NH4NO3形式存在;NO-3/SO2-4比值表明,成都市大气中硫和氮的主要来源以固定源为主;硫氧化速率和氮氧化速率的年均值分别为:0.33±0.12和0.19±0.09,表明成都市PM2.5中SO2-4和NO-3主要经二次转化形成.  相似文献   

10.
乌鲁木齐市重污染期间PM2.5污染特征与来源解析   总被引:4,自引:0,他引:4  
目前有关我国城市大气重污染期间PM2.5污染特征及其来源的研究较少,为深入了解典型城市大气重污染期间PM2.5的污染特征与来源构成,于2013年1月19—30日在乌鲁木齐市采集PM2.5样品,并依据相关划分标准,确定1月19—28日为重污染天气. 分析了重污染天气下ρ(PM2.5)及主要化学组成(包括水溶性离子、无机元素和碳组分),运用统计学方法研究了重污染期间PM2.5的污染特征,并且采用富集因子法和CMB受体模型解析了PM2.5的来源构成.结果表明:大气重污染期间ρ(PM2.5)严重超标,其中米东区环境保护局采样点的ρ(PM2.5)最高,其次是铁路局、市监测站;PM2.5化学组分以SO42-、TC、Si和NO3-为主,其中二次离子占ρ(PM2.5)的43.1%;城市扬尘、煤烟尘和二次粒子是环境空气中PM2.5的主要污染源类,三者在乌鲁木齐市以及米东区的分担率分别为24.7%、15.6%、38.0%和20.8%、28.0%、36.2%,其中二次硫酸盐的分担率在两地更分别达到28.6%和27.0%.   相似文献   

11.
为探讨兰州市大气细颗粒物化学组成及其污染来源,对兰州市大气PM_(2.5)中水溶性离子、无机元素以及OC和EC进行了研究。结果表明:PM_(2.5)浓度及其化学组成具有明显的季节变化特征,PM_(2.5)浓度为冬季>春季沙尘>春季>夏季;水溶性离子以SO_4~(2-)、NH_4~+和NO_3~-浓度最高,占总水溶性离子的78.7%~87.1%,表明该地区的二次污染较为严重,主成分分析表明水溶性离子主要来源于燃烧源和土壤源;无机元素以Zn、Pb和Ba浓度最高,主要来源于燃煤和机动车源;OC冬季浓度最高,而EC夏季浓度最高,并形成了较严重的二次有机碳污染。  相似文献   

12.
黄军  郭胜利  王希 《环境工程》2015,33(12):69-74
南京2013年冬季至2014年春季多次出现灰霾污染天气过程,防治颗粒物污染刻不容缓,其中细颗粒物(PM_(10))和超细颗粒物(PM_(2.5))所占比例较大。利用南京市环保局空气质量发布平台污染物监测数据和中国天气网站气象要素数据,对冬春季PM_(2.5)和PM_(10)质量浓度的变化特征以及它们与气象条件的关系进行分析。结果表明:南京冬季PM_(2.5)、PM10平均浓度分别为0.0982,0.1536 mg/m3,春季平均浓度分别为0.0673,0.1207 mg/m3。市区和郊区污染程度由高到低依次为:市区>江宁>六合>溧水。南京空气中颗粒物小时平均浓度日变化呈"双峰双谷型"特征。颗粒物与相对湿度、降雨量和风力呈一定的负相关性,与温度呈一定的正相关性,它们共同影响颗粒物质量浓度水平和大气污染状况。  相似文献   

13.
2015年入冬以来京津冀区域重污染频发,综合分析了2015年12月19—26日京津冀及周边地区发生的一次重污染过程中PM_(2.5)分布特征及成因。监测数据显示,2015年12月北京市重污染日共计13 d,累计月均值为151.8μg/m3。在12月19—26日一次重污染过程中,区域污染面积均超过40万km2,北京市单站PM_(2.5)小时均值超过800μg/m3。污染初期北京市南部地区PM_(2.5)浓度明显偏高,且PM_(2.5)极端高值出现在南部站点。污染输送阶段,北京市PM_(2.5)小时浓度在短时内呈爆发式增长,浓度增值是年均值的2~5倍。污染缓解阶段,偏北风作用,浓度明显下降。除了极端不利的天气形势外,区域散煤排放是造成重污染的重要原因;河北省唐山、保定、廊坊、石家庄等城市区域输送加重了污染程度。  相似文献   

14.
田蓉  刘迎云  陈攀  张辉  姜雨 《环境工程》2017,35(9):127-130
为了解重化工业城市PM_(2.5)中重金属污染特征,2015年12月—2016年9月采集了衡阳城区3个点位的84个PM_(2.5)样品,检测了PM_(2.5)中9种重金属元素(Pb、Cd、Cu、Cr、Ni、Zn、Mn、Hg、As),并对其展开健康风险评价。结果发现:采样期间,衡阳城区PM_(2.5)质量浓度范围为18.10~325.72μg/m~3,平均质量浓度为89.65μg/m3。9种重金属平均质量浓度排序为:Zn>Cu>Pb>Mn>Cr>Ni>Cd>As>Hg,84个样品中Pb超标率为14.29%,Cd超标率为61.90%,As超标率为54.76%。9种重金属经呼吸暴露途径对人群的健康风险指数均低于风险阈值,不会对人体构成明显健康风险,但重金属Cr的风险指数趋近安全阈值,各风险指数均排序为成年男性>成年女性>儿童青少年。  相似文献   

15.
通过对石家庄市2013年1~12月PM2.5和PM10实时数据的整理和分析,结果表明,石家庄市区大气中细颗粒物PM2.5和可吸入颗粒物PM10月均浓度变化呈明显的季节性,二者变化趋势基本一致,采暖期12-2月份浓度普遍高于其他月份,PM2.5和PM10浓度最高值均出现在1月份;春夏PM2.5和PM10浓度有所降低,7月份浓度最低。PM2.5和PM10存在显著的正相关关系。  相似文献   

16.
邓林俐  张凯山 《环境工程》2020,38(5):113-119
吸附在大气细颗粒物PM2.5中的金属元素具有强稳定性和富集性,随着城市大气PM2.5污染加剧,对公众健康构成极大的威胁。为了解大气PM2.5中金属污染的地区特征,选取中国雾霾发生频次较高区域中典型城市作为研究对象,概述了2013—2017年城市大气PM2.5中金属污染水平、时空分布特征及其主要来源。经分析,地区气象条件、工业布局和污染源的差别是各城市大气PM2.5中金属元素污染水平及时空分布存在较大差异的主要原因。二次气溶胶、燃煤和生物质燃烧在研究城市大气PM2.5金属元素来源中占据主要贡献,其他源类在各个地区贡献率有所不同。未来的工作应进一步探讨工业布局的改变对大气PM2.5及其中金属元素污染及来源的影响,以期为环保部门制定有效的大气污染防治措施提供参考。  相似文献   

17.
使用单颗粒气溶胶质谱仪(SPAMS)分析了淮安市冬季大气中单颗粒PM2.5的特征。对采集到的颗粒物利用MATLAB进行处理,解析得到机动车尾气、燃煤、工业工艺源等7大颗粒物来源。初步判断,灰霾污染发生很可能是由于扩散条件不利致使燃煤及机动车尾气源累积,二次转化加剧而导致。  相似文献   

18.
水泥工业大气污染与防治的几个问题   总被引:8,自引:1,他引:8  
对不同类型水泥窑的SO2及NOx污染与防治进行讨论;指出水泥厂粉尘污染监控及收尘设备选用方面的问题。  相似文献   

19.
洪沁  常宏宏 《环境工程》2018,36(4):108-112
选取西南地区为采样点,于2015年非重污染和重污染时期对环境PM_(2.5)进行采样,并对PM_(2.5)、水溶性离子和碳质组分的污染特征进行分析。结果显示:重污染与非重污染天PM_(2.5)质量浓度分别为(204.8±47.0)μg/m~3和(66.8±23.1)μg/m~3。重污染天气下SO_4~(2-)、NO_3~-和NH_4~+浓度分别是非重污染天气下的3.5,4.2,3.4倍,SIA浓度占PM_(2.5)的比例可高达42.2%。重污染期间OC和EC浓度分别是非重污染期间的4.8,2.7倍,SOC浓度在非重污染和重污染期间分别为(3.2±1.6),(25.6±15.2)μg/m~3,OC、EC较低的相关性也反映出重污染期间碳质组分来源的复杂性。  相似文献   

20.
2012年9月1日至30日利用大气气溶胶OC/EC在线分析仪在线分析了西安PM2.5中的OC、EC,并结合O3和紫外辐射数据(UV)进行了分析。结果表明:PM2.5、OC、EC、及O3的日均值分别为85.22,19.50,7.18,56.69μg/m3。PM2.5及其中OC、EC的日变化规律呈现"双峰"分布,OC、EC的日波动范围较PM2.5小,且OC的波动范围较EC大,OC、EC的相关性较高(R2=0.73)。PM2.5中TCA的平均比重为47.85%,是PM2.5的主要成分之一,TCA以OM为主,OM中SOC的平均比重高达54.76%,PM2.5中SOC的平均比重为21.25%,SOC和O3的相关性较高,表明研究期间西安市有机物光化学反应较重。1 d中10:00至19:00是PM2.5中SOC比重最高的时段且呈上升趋势,而PM2.5中TCA的变化规律则呈"W"型双峰分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号