首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对空调系统末端装置用风机盘管不具备过滤PM_(2.5)功能的问题,在风机盘管回风口加装具有低阻特性的驻极体空气过滤器进行了性能测试分析。以蜡烛燃烧产生的颗粒物作为室内PM_(2.5)的尘源,将3种不同过滤面积的驻极体空气过滤器分别安装在风机盘管回风口,测试了风机盘管在不同风量(额定风量、75%额定风量、50%额定风量)下运行时其对PM_(2.5)过滤性能及在30 min内室内PM_(2.5)浓度衰减率。结果表明:加装驻极体空气过滤器后风机盘管瞬时过滤效率可达到66%以上、在30 min内室内PM_(2.5)的浓度衰减率可以达到54.8%以上;在相同风量下风机盘管的瞬时过滤效率、处理风量随加装过滤器过滤面积增加而提高;以PM_(2.5)浓度衰减率作为指标,可以判断出回风口加装过滤面积为1.88 m2的过滤器净化效果最优,其在不同风量下30 min内PM_(2.5)浓度衰减率分别为87.4%、84.7%和77.3%,且在不同风量下工作时均能在30min内使室内PM_(2.5)浓度达到环境空气质量标准一级日平均浓度限值。  相似文献   

2.
以燃烟为室内污染源,对不同污染程度下室内PM_(2.5)浓度进行动态监测,得到PM_(2.5)的沉降规律。研究发现,污染源对室内PM_(2.5)浓度及沉降时间有显著影响,随着燃烟量的增加,室内PM_(2.5)浓度相应升高,恢复到PM_(2.5)初始值所需的沉降时间越长。在质量平衡模型的基础上,建立了封闭条件下室内颗粒物的沉降模型。经验证,PM_(2.5)沉降曲线的变化规律与颗粒物沉降模型一致,说明构建的沉降模型合理可靠。最后,给出了自然通风对控制室内PM_(2.5)污染的效果,为室内PM_(2.5)污染控制提供参考。  相似文献   

3.
地铁是人们出行的重要交通方式,车厢内颗粒物污染可影响人体健康。2016年春、秋、冬季对北京地铁1号、2号、4号、10号线进行现场监测,探讨北京地铁车厢内颗粒物污染特征。研究结果表明,北京地铁车厢内PM_(2.5)平均浓度超标率为83.8%~98.7%,地铁1号线PM_(10)平均浓度超标率为59.6%。地铁车厢内PM_(2.5)和PM_(10)浓度存在工作日和周末组间显著性差异,表明客运量对车厢内颗粒物浓度有较大影响。地铁车厢内PM_(2.5)和PM_(10)浓度存在季节性差异,冬季车厢内颗粒物平均浓度最高。不同线路车厢内PM_(2.5)和PM_(10)浓度存在组间差异,地铁通风空调系统、门系统和客运量是造成其差异的主要原因。  相似文献   

4.
为研究成都市降水对大气颗粒物(以下简称颗粒物)的湿清除作用,对2014—2016年成都市的颗粒物(PM_(2.5)、PM_(10))和气象观测数据进行分析。结果表明:月、季尺度下,降水对PM_(2.5)、PM_(10)均有削减作用。降水时段的PM_(2.5)、PM_(10)浓度较非降水时段分别降低17.1%和15.8%,且冬季降幅最为明显。考察472次降水过程对颗粒物的湿清除作用,发现单次降水过程后PM_(2.5)、PM_(10)浓度增长频次(243、234次)和削减频次(229、238次)接近,但颗粒物浓度总体呈削减趋势。对于单次降水过程,颗粒物的初始浓度与降水对颗粒物的湿清除作用关系密切,特别是降水持续时间超过8h后,颗粒物初始浓度越高,削减效果越好。  相似文献   

5.
机动车行驶过程中车轮转动引起的道路交通扬尘对城市颗粒物具有较大影响。利用DustTrak 8530型颗粒物检测仪结合全球定位系统(GPS),研究了机动车车速对道路交通扬尘排放特征的影响。结果表明:随着车速的加快,由机动车车轮转动引起的PM_(10)、PM_(2.5)浓度以及PM_(2.5)/PM_(10)(质量浓度比,下同)逐渐增大;通过对数据进行拟合,分别得出PM_(10)、PM_(2.5)浓度及PM_(2.5)/PM_(10)与机动车车速之间的函数关系。研究结果为准确构建道路交通扬尘排放清单以及测试道路交通扬尘排放因子和排放量奠定了实验基础。  相似文献   

6.
为了解北京城区夏季大气颗粒物PM_(2.5)及其不同组分的化学、生物污染特征,于2014年5月末连续采样一个月,采样后超声洗脱并冷冻干燥得到PM_(2.5)颗粒物,在PM_(2.5)颗粒物的基础上制备PM_(2.5)水溶性组分和PM_(2.5)单纯颗粒物,进而对PM_(2.5)颗粒物及另外两种组分样品中的化学及生物成分进行分析测定。结果表明,8种水溶性离子总质量占PM_(2.5)各样品的质量分数依次为67.71%,33.37%,0.09%(依次为PM_(2.5)水溶性组分、PM_(2.5)颗粒物、PM_(2.5)单纯颗粒物,下述数据也按此顺序描述);16种"酸提"元素总质量占PM_(2.5)各样品的质量分数依次为4.84%,1.86%,0.78%;各样品中内毒素含量分别为0.054 7 EU·mg-1,0.433 3 EU·mg-1,0.041 9 EU·mg-1;PM_(2.5)颗粒物可以检测到细菌16S r DNA、真菌18S r DNA,拷贝量分别为(2.6±1.0)×108个·g-1、(4.3±0.9)×108个·g-1。  相似文献   

7.
为了解西安市燃煤锅炉排放颗粒物的组分情况,采用稀释通道采样,用滤膜采集了西安市3台链条炉排放颗粒物中的PM_(2.5)和PM_(10),并利用离子色谱仪(IC)、电感耦合等离子体质谱仪(ICP-MS)和碳分析仪等分析了其中的主要组分。实验结果表明,燃煤锅炉排放颗粒物中PM_(2.5)和PM_(10)的主要组分有SO_4~(2-)、NH_4~+、Cl~-、有机碳(OC)、元素碳(EC)、Al、Si。Si、Ca等地壳元素在PM_(10)中所占比例多于PM_(2.5),而NO_3~-、NH_4~+、OC等二次生成物在PM_(2.5)中所占比例多于PM_(10)。对比PM_(2.5)和PM_(10)组分可以发现,同种组分在不同燃煤锅炉排放的PM_(2.5)和PM_(10)中分布差异很大,这可能与除尘、脱硝等工艺密切相关。研究内容对西安市大气颗粒物源解析工作具有重要的参考价值,为西安市颗粒物源解析项目积累了一定的经验。  相似文献   

8.
细颗粒物(PM_(2.5))随空调新风进入室内,和室内产生的PM_(2.5)粒子一起作用,导致人体暴露在室内细颗粒物环境中。为保证室内空气品质,最大限度节约空调系统运行能耗,建立了室内PM_(2.5)浓度与CO_2体积分数双组分模型,提出了适用于某会议室不同室内外PM_(2.5)源、不同人数以及不同天气状况下的最佳通风策略,利用Simulink对炎热天气室内有无PM_(2.5)散发源、温和天气室内有无PM_(2.5)散发源4种工况下的不同通风方式进行仿真对比。模拟结果表明:炎热天气存在最小新风量,该值由室内人数决定,过滤送风对控制室内PM_(2.5)浓度效果最好;温和天气存在最大新风量,且该值与过滤器效率成正比;在所研究的情况下,温和天气节能潜力比炎热天气大。  相似文献   

9.
使用β射线法在线监测仪连续监测了贵阳市白云区PM_(10)和PM_(2.5)浓度,分析了2014年6月1日—12月31日7个月内PM_(10)、PM_(2.5)的浓度水平、时变规律和PM_(2.5)/PM_(10)的变化情况。结果表明,监测时段内PM_(10)和PM_(2.5)的日均浓度平均值分别为76.8μg/m~3和40.0μg/m~3,均达到国家二级标准;浓度超标的天数占总观测天数的5.1%和9.3%,属污染轻微的地区。PM_(2.5)/PM_(10)在25.3%~78.8%之间周期性波动,平均值为52.1%。PM_(10)和PM_(2.5)的浓度变化具有很好的正相关性(r=0.919 8,p0.000 1);日均值在7个月中呈现明显的周期性变化,各月相对稳定,12月的PM_(10)和PM_(2.5)浓度最高且变化最为剧烈,6月最为平缓。PM_(10)和PM_(2.5)浓度小时变化总体上呈双峰型分布,最高值出现在出现在09:00—10:00和19:00—21:00前后,最低值出现在14:00—17:00之间。  相似文献   

10.
基于海南省2016年工业环境统计数据,通过自下而上的方法建立海南省2016年工业大气污染源排放清单,并利用中国多尺度排放清单模型(MEIC)排放清单进行背景源补充,使用CALPUFF模型进行大气污染模拟。污染物排放清单结果显示,2016年海南省SO_2、NO_x、CO、PM_(2.5)、PM(10)、黑碳(BC)、有机碳(OC)、挥发性有机物(VOCs)和NH3的排放量分别为1.50×10~4、5.10×10~4、4.56×10~5、2.34×10~4、2.10×10~4、3.50×10~3、1.20×10~4、4.96×10~4、6.50×10~4 t,其中SO_2主要排放源为化石燃料固定燃烧源(分担率66.67%),NO_x主要排放源为交通源(分担率51.18%),CO、PM_(10)、PM_(2.5)主要排放源为生活源(分担率分别59.01%、81.28%和87.62%),VOCs主要排放源为工业溶剂使用源(分担率75.91%),NH_3主要排放源为农业源(分担率93.54%)。排放量较大的区域集中在儋州市、澄迈县一带。SO_2、NO_x年均最大浓度均出现在海口市,PM_(10)、PM_(2.5)年均最大浓度均出现在定安县。交通源对全省污染物浓度贡献突出,工业源虽然对颗粒物浓度贡献率较低,但仍需加强PM_(2.5)治理。  相似文献   

11.
采集了呼和浩特市城市扬尘、土壤风沙尘、建筑水泥尘和煤烟尘4类源样品,进行形态分析和化学组分分析,建立了PM_(10)和PM_(2.5)源成分谱。研究表明,建筑水泥尘和土壤风沙尘呈不规则的块状;而煤烟尘呈现圆形。就化学组成而言,各源类PM_(10)和PM_(2.5)的成分谱之间相关系数在0.8以上,具有显著相关性,各类源的标识组分一致。城市扬尘中主量成分为Si、Al、Ca、Fe和有机碳(OC);土壤风沙尘中Si占比最高,PM_(10)和PM_(2.5)中占比均大于20%(质量分数,下同);建筑水泥尘中Ca占比较高;煤烟尘中Si、Al、OC、SO_4~(2-)在PM_(10)和PM_(2.5)中的占比均超过10%。此外,对供热、工业、电力行业排放的煤烟尘进行了对比分析,供热行业中的煤烟尘含碳量较高;工业排放的煤烟尘PM_(10)中元素占比较高,这可能与锅炉类型、除污措施等相关。  相似文献   

12.
为了解无风天情况下PM_(2.5)、PM_(10)的人体暴露水平及扩散机制,对人体呼吸高度的PM_(2.5)、PM_(10)浓度及近地面不同高度处的温度、相对湿度进行连续监测,分析了垂直温度梯度、相对湿度的相对变化速率对PM_(2.5)、PM_(10)浓度的影响,并利用回归分析法建立PM_(2.5)、PM_(10)浓度与不同高度处温度、相对湿度的单、多变量回归模型,从中选取最优回归模型。结果表明:(1)晴天的PM_(2.5)、PM_(10)浓度在研究时段(9:00—21:00)内总体呈先降低再升高的趋势,而阴天、小雨天PM_(2.5)、PM_(10)浓度呈多峰变化,起伏较大;晴天不同高度的温度差异大,阴天、小雨天温度差异相对较小;晴天不同高度的相对湿度曲线总体均呈U型分布,相较而言,阴天及小雨天各层的相对湿度曲线波动较大;(2)垂直温度梯度是影响晴天PM_(2.5)、PM_(10)扩散的主要原因,相对湿度变化是影响颗粒物扩散的另一重要因素。(3)PM_(2.5)、PM_(10)浓度的单、多变量最优回归模型表明,低污染晴天,温度是影响颗粒物扩散的主要因素,高污染晴天则主要受相对湿度的影响,介于上述两种污染状况之间时,PM_(2.5)、PM_(10)浓度不仅受各层相对湿度的控制,还受到温度的影响。阴天PM_(2.5)、PM_(10)浓度的最优回归模型相对复杂,模型精度不及晴天。  相似文献   

13.
为掌握室内外细颗粒物(PM_(2.5))污染特性,监测采集西安市某办公场所室内外PM_(2.5)样品,统计分析PM_(2.5)质量浓度特征,探究室内外PM_(2.5)相关性、微观形貌以及矿物组成的差异。结果表明:室内外PM_(2.5)年均质量浓度分别为85.32和109.83μg·m~(-3),冬季污染尤为严重。室内PM_(2.5)受室外PM_(2.5)影响显著,室内外PM_(2.5)质量浓度的相关系数为0.890 0。室内PM_(2.5)多为粒径小于1μm的球状颗粒物,而室外颗粒物形状、大小不规则,室内外PM_(2.5)均含有大量的碳、氧元素,其他元素的种类和含量存在一定差异。室内PM_(2.5)中矿物多为非晶态物质,室外PM_(2.5)主要由石英、赤铁矿和碳酸钙等矿物质组成。  相似文献   

14.
无锡市区大气污染物污染特征及影响因素研究   总被引:1,自引:0,他引:1  
利用2014年无锡市区的6种大气污染物浓度和气象因子等监测数据,研究了无锡市区各种大气污染物的污染特征及其影响因素。结果表明:(1)无锡市区PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度的季节变化特征为冬季最高,夏季最低;O_3浓度表现为夏季最高,冬季最低。就全年的综合情况而言,颗粒物污染,尤其是PM_(2.5)污染最严重。(2)PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度间两两呈正相关;PM_(2.5)、SO_2、NO_2、CO浓度均与O_3浓度呈负相关。(3)温度与PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度呈负相关,与O_3浓度呈正相关;相对湿度与PM_(2.5)、PM_(10)、SO_2、NO_2、O_3浓度呈负相关,与CO浓度无相关性;风级与PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度呈负相关,与O_3浓度无相关性。降水有利于PM_(2.5)、PM_(10)、SO_2、NO_2、O_3浓度的降低,但对CO浓度影响不大。(4)无锡市区空气质量周末比工作日差。NO_2、SO_2浓度周末低于工作日,O_3浓度周末高于工作日,呈现明显的"周末效应";PM_(2.5)、CO浓度周末高于工作日,未出现"周末效应"。  相似文献   

15.
近年来雾霾天气在中国大面积频发,PM_(2.5)已经成为中国大气颗粒物污染的首要污染物。对中国近年来PM_(2.5)的研究进展进行总结,分析了城市大气及室内环境中PM_(2.5)的来源,阐述了PM_(2.5)对大气能见度、人体健康及人们行为方式的影响,介绍了室内外关于PM_(2.5)的相关性指标以及PM_(2.5)控制的最新技术等,最后对相关研究前景进行分析并提出建议。  相似文献   

16.
通过SEM-EDX和XRD对采集来的地铁颗粒物(PM_(10)和PM_(2.5))进行形貌和成分分析,研究结果表明:地铁颗粒物具有粒径大(可达10μm)、形状不规则、表面具有明显的刮擦痕迹等特征,主要成分为Si、C、O和Fe;其中Fe主要以Fe_3O_4、Fe_2O_3等氧化物的形式存在。针对地铁颗粒物含铁磁的特性,采用磁性过滤控制方法对地铁颗粒物开展研究,构建的磁性过滤装置对该地铁颗粒物的捕获效果可达90%以上,在一定磁性强度范围内(0~0.300T),滤网对颗粒物的捕获效果随着对其施加的磁性强度增加而提升,当施加的磁场强度为0.300 T时,装置对地铁颗粒物的捕获效率接近100%,比相同条件下对飞灰的捕获效率高出10%~15%,建议把磁过滤作为一种前处理装置用在含磁颗粒物处理上。  相似文献   

17.
分别在采暖期和非采暖期采集了长春市净月区与朝阳区的大气颗粒物,研究其污染特征的差异,并进行了形貌分析。结果表明:(1)净月区采暖期与非采暖期PM_(2.5)平均质量浓度分别为144.86、87.10μg/m~3,PM_(10)平均质量浓度分别为149.07、138.72μg/m~3;朝阳区采暖期与非采暖期PM_(2.5)平均质量浓度分别为234.48、110.01μg/m~3,PM_(10)平均质量浓度分别为275.07、147.50μg/m~3。整体上,非采暖期大气颗粒物浓度低于采暖期。(2)无论是采暖期还是非采暖期,净月区PM_(2.5)与PM_(10)浓度均明显低于朝阳区。(3)净月区采暖期大气颗粒物来源主要是柴油尾气、燃煤源与生物质燃烧;非采暖期,机动车尾气、建筑扬尘、土壤扬尘与某些工业排放对大气颗粒物贡献较大。朝阳区大气颗粒物来源较净月区复杂,这与两个区不同的地理位置和不同功能有直接的联系,建筑扬尘对于朝阳区大气颗粒物的含量有较大的影响。  相似文献   

18.
为应对2017年底绵阳出现的一次重污染天气,绵阳政府于2017年12月25日0时至29日12时首次实行了机动车尾号限行措施。利用2017年12月20日至2018年1月2日绵阳4个国控环境质量监测站点的CO、NO_2、SO_2、O_3、PM_(2.5)、PM_(10)的数据分析限行前后的污染物浓度变化特征,并结合气象数据进行污染成因分析。结果表明,大气颗粒物PM_(2.5)和PM_(10)是此次重污染天气的首要污染物,机动车尾号限行措施对PM_(2.5)和PM_(10)有一定的减排效果。机动车尾号限行措施对NO_2、SO_2、O_3具有明显的减排效果,而对CO几乎没有减排效果。限行前和限行期大气颗粒物主要来源于化学转化形成的二次颗粒物,而限行后则转为沙尘、扬尘等一次颗粒物。江油对绵阳大气颗粒物PM_(2.5)、PM_(10)影响很大,气流轨迹出现频率高,大气颗粒物浓度也高,有必要考虑进行区域联防联控。  相似文献   

19.
对2013—2015年重庆主城区空气重污染情况进行统计,并结合地面和高空探测手段,分析了一次典型重污染过程的污染特征。结果表明:重庆主城区秋冬季节的空气污染,以受不利气象条件影响的本地细颗粒物(PM_(2.5))累积污染为主,PM_(2.5)占PM_(10)的平均比例为72%左右;大气能见度与颗粒物浓度、相对湿度均呈现明显的负相关性。典型污染期间的近地层颗粒物污染带主要在0~400 m的高度范围,AOD值高达2.0~2.4,α指数在1.0左右。二次粒子、机动车尾气、扬尘是污染期间重庆主城区PM_(2.5)的主要来源。  相似文献   

20.
为研究严寒地区供暖季室内外PM_(2.5)浓度的垂直分布,在供暖季分别对长春某高层居住建筑1、8、15、24、33楼层的室内外PM_(2.5)浓度进行监测,研究不同楼层室内外PM_(2.5)的浓度与变化特征。采用随机组分重叠模型(RCS)方法研究各楼层PM_(2.5)渗透因子,采用逐步回归分析方法研究室内PM_(2.5)浓度的各影响因素。结果表明:在供暖季,长春市高层建筑的不同楼层均存在一定的PM_(2.5)污染,室内外PM_(2.5)浓度随楼层升高大体呈现减小的趋势,但差异不显著。室内外PM_(2.5)浓度存在显著的相关性(P 0.05),在没有室内污染源时,室外颗粒物渗透是室内污染的主要来源。室内PM_(2.5)浓度与房间面积等没有显著相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号