首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解不同进水C/P条件下同步硝化内源反硝化除磷(SNEDPR)的脱氮除磷特性.以实际城市污水为处理对象,采用延时厌氧(180 min)/低氧(溶解氧0.5~1.0 mg·L~(-1))运行的序批式反应器(SBR),考察了进水C/P(分别为60、30、20、15、10)对系统C、N、P去除特性的影响.结果表明:适当降低进水C/P(由60降至30)有利于提高系统内PAOs竞争优势.当C/P为30时系统除磷性能最高,厌氧段释磷速率(PRR)和好氧段吸磷速率(PUR,以P/MLSS计,下同)分别高达3.5mg·(g·h)-1和4.2 mg·(g·h)-1,出水PO3-4-P浓度均低于0.3 mg·L~(-1),且PPAO,An高达88.1%;但进一步降低进水C/P至10时,PO3-4-P去除率和PPAO,An分别由38.1%和82.4%降低至3.1%和5.3%,PRR和PUR分别仅为0.2 mg·(g·h)-1和0.24mg·(g·h)-1,系统表现出较差的除磷性能.降低C/P对系统COD去除性能没有影响,COD去除率稳定在85%左右.此外,当C/P由60降低至20时,系统硝化性能变差,表现为出水NH+4-N和NO-2-N浓度分别由0和6.9 mg·L~(-1)升高至5.1 mg·L~(-1)和16.2 mg·L~(-1);而当C/P进一步降低至10时,系统硝化性能得以恢复,但亚硝积累特性遭到破坏,表现为出水NH+4-N和NO-2-N浓度逐渐降低为0,但出水NO-3-N浓度由0.08 mg·L~(-1)升高至14.1 mg·L~(-1).SNED率先由62.1%降低为36.4%后又逐渐提高至56.4%.C/P低于15时,有利于提高GAOs的竞争优势,且C/P由20降至10时系统脱氮性能得以恢复,原因在于GAOs内源反硝化作用的增强.  相似文献   

2.
为了解厌氧/好氧/缺氧(A/O/A)运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步短程硝化反硝化(SPND)耦合,并后置短程反硝化的脱氮除磷特性,以低C/N(≤4)城市污水为处理对象,通过优化曝气量和缺氧时间,实现了低C/N城市污水的深度脱氮除磷。结果表明,当好氧段曝气量由1.0L·min-1降至0.6L·min-1,缺氧时间为180min时,出水PO43--P浓度由0.06mg·L-1降至0,出水NH4+-N、NO2--N和NO3--N浓度分别由0.18、18.79和0.08mg·L-1逐渐降低至0、16.46和0.05mg·L-1,TN去除率由72.69%提高至77.97%;随着曝气量的降低,SPND现象愈加明显,SND率由19.18%提高至31.20%;此后,当缺氧段时间由180min逐渐延长至420min,出水PO43--P、NH4+-N和NO3--N浓度分别维持在0、0和0.03mg·L-1左右,出水NO2--N低至3.06mg·L-1,SND率达32.21%,TN去除性能逐渐提高,TN去除率高达99.42%,实现了系统的深度脱氮除磷。  相似文献   

3.
为了解同步硝化内源反硝化系统(SNEDPR)脱氮除磷性能,采用延时厌氧(180 min)/低氧(溶解氧0.5~2.0 mg·L-1)运行的SBR反应器,以人工配置的模拟废水为处理对象,先采用恒定进水C/N(为10),以实现SNEDPR的启动和聚磷菌(PAOs)的富集培养,再调控进水C/N值(分别为10、7.5、5和2.5),考察不同C/N对系统的脱氮除磷性能的影响。结果表明,当进水C/N为10,可实现SNEDPR的启动与深度脱氮除磷,出水PO43--P和总氮(TN)浓度分别平均为0.1 mg·L-1和8.1 mg·L-1,PO43--P去除率、TN去除率和SNED率平均值分别为99.79%、89.38%和58.0%。当进水C/N由5提高至10时,系统维持良好的脱氮除磷性能,释磷量(PRA)和SNED率分别由16.0 mg·L-1和48.0%提高至24.4 mg·L-1和69.2%;当C/N为10时,TN和PO43--P去除率最高达94.5%和100%;当C/N为2.5时,系统失去脱氮、除磷性能,PRA和SNED率仅为1.36 mg·L-1和10%。在系统稳定运行阶段(C/N为10、7.5和5),SNED率达85.9%,出水NH4+-N、NOx--N和PO43--P浓度平均为0、8.1和0.1 mg·L-1。  相似文献   

4.
以低C/N值生活污水为处理对象,重点考察了以厌氧/缺氧(A/A)运行的ABR耦合好氧MBR系统启动过程中脱氮除磷特性及系统长期运行的稳定性。结果表明,控制ABR容积负荷(VLR)为0.8 kg·(m3·d)-1,污泥回流比为80%,硝化液回流比从150%逐步提升稳定至300%,反硝化除磷功能区污泥停留时间(sludge retention time,SRT)为25 d,MBR溶解氧(DO)为1~2 mg·L-1,温度为30℃±2℃,于46d成功富集了反硝化聚磷菌(denitrifying phosphorus bacteria,DPBs),净释磷量为20.56 mg·L-1,净吸磷量达到27.74 mg·L-1,批次实验表明约84.8%的聚磷菌(PAOs)能够利用NO3--N作为电子受体进行反硝化除磷。启动成功后稳定运行50d,对COD、NH4+-N、TN和PO43--P的平均去除率分别为91.8%、99.0%、71.5%和94.2%,系统缺氧反硝化除磷去除1 mg·L-1的PO43--P,同步消耗约0.83 mg·L-1的NO3--N,满足同步脱氮除磷的要求。  相似文献   

5.
以低C/N城市污水为处理对象,采用延时厌氧(180min)/好氧运行的SBR反应器,通过调控曝气量[单位体积的反应器在单位时间内通过的气体的体积,单位为L·(min·L)-1。由0.125L·(min·L)-1逐渐降低至0.025L·(min·L)-1]和好氧时间(由3h逐渐延长至6h),考察了SPNDPR系统的深度脱氮除磷性能。结果表明,当曝气量为0.025 L·(min·L)-1、好氧时间为6h时,SPNDPR系统出水NH4+-N、NO2--N、NO3--N和PO43--P浓度分别为0、8.62、0.06和0.03mg·L-1;出水TN浓度约为9.22mg·L-1,TN去除率高达87.08%。当曝气量分别由0.125 L·(min·L)-1降至0.100 L·(min·L)-1和由0.100L·(min·L)-1降至0.075 L·(min·L)-1时,系统硝化速率均能恢复并稳定维持在0.16mg·(L·min)-1左右。但曝气量继续降至0.050L·(min·L)-1和0.025L·(min·L)-1后,硝化速率分别降至0.09 mg·(L·min)-1和0.06 mg·(L·min)-1左右。随着曝气量的降低[由0.125 L·(min·L)-1依次降至0.100、0.075、0.050、0.025L·(min·L)-1]和好氧时间的延长(由3h延长至6h),SPND脱氮性能逐渐增强,SND率由19.57%升高至72.11%,TN去除率逐渐升高(由62.82%升高至87.08%)。降低曝气量和延长好氧时间后的SPNDPR系统,强化了厌氧段内碳源贮存与好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化等过程的进行,实现了低C/N城市污水的深度脱氮除磷。  相似文献   

6.
为探究乙酸钠作为碳源时,不同污泥源外源短程反硝化过程中亚硝酸盐积累特性,采用1号和2号SBR分别接种某污水处理厂二沉池和同步硝化反硝化除磷系统剩余污泥,通过合理控制初始硝酸盐浓度和缺氧时间,实现了短程反硝化的启动,并考察了其在不同初始COD和NO3--N浓度条件下的碳、氮去除特性。试验结果表明:以乙酸钠为碳源,1号和2号SBR可分别在21d和20d实现短程反硝化的成功启动,且其NO2--N积累量和亚硝酸盐积累率(NAR)均维持在较高水平,分别为12.61mg·L-1、79.76%和13.85mg·L-1、87.60%。当2号SBR初始NO3--N浓度为20mg·L-1,且初始COD浓度由60mg·L-1升高至140mg·L-1时,系统实现最高NO2--N积累时间可由160min逐渐缩短至6min,同时NO3--N比反硝化速率(以VSS计)由3.84mg·(g·h)-1增加至7.35mg·(g·h)-1,初始COD浓度的提高有利于实现短程反硝化过程NO2--N积累。2号SBR初始COD浓度为100mg·L-1,当初始NO3--N浓度由20mg·L-1增加至30mg·L-1时,系统NAR均维持在90%以上,最高可达100%(NO3--N初始浓度为25mg·L-1);当初始NO3--N浓度≥35mg·L-1时,系统COD不足导致NO3--N不能被完全还原为NO2--N。此外,在不同初始COD浓度(80、100、120mg·L-1)和NO3--N浓度(20、25、30、40mg·L-1)条件下,2号SBR的脱氮除碳和短程反硝化性能均优于1号SBR。  相似文献   

7.
张耀斌  邢亚彬  荆彦文  全燮 《环境科学》2010,31(10):2360-2364
采用厌氧-缺氧条件运行的序批式移动床生物膜反应器,考察了NO3--N进水浓度及其投加方式对低碳废水(COD=200mg/L)反硝化除磷的影响.经驯化后,反硝化聚磷菌(DPB)在总聚磷菌的份额从15.7%增长到71.3%,富集了DPB.NO3--N的浓度对处理有较大影响.在NO3--N为30mg/L(即C/N=6.7:1)时,COD、PO43--P和NO3--N的去除率分别为97.8%、82.0%和81.2%,实现低碳污水的高效处理.NO3--N较低或较高浓度(20mg/L和40mg/L)时,缺氧段吸磷不充分,PHB由厌氧开始时的2.2mg/g左右分别积累至5.1mg/g和3.5mg/g,影响下一周期磷的释放.1次投加、2次投加和连续流加NO3--N,除对缺氧初期的反硝化吸磷速率有影响外,对反硝化除磷的效率影响不明显.  相似文献   

8.
膜序批式生物反应器脱氮性能研究   总被引:5,自引:3,他引:2  
张胜  张铭川  徐立荣  竺建荣  刘鸿亮 《环境科学》2008,29(10):2798-2803
采用厌-好氧交替膜序批式反应器,实验室人工合成配水,连续运行300 d,对反应器脱氮性能进行了研究.结果表明,污泥浓度达到18 g·L-1时,污泥粒径大小在100μm以上的占96%,污泥出现颗粒化.FISH-CLSM分析AOB及NOB的群落空间分布表明它们在污泥中大量存在.NH4 -N进水50 mg·L-1左右时出水在1 mg·L-1以下,硝化反应在180~210 min就可以完成.曝气强度与硝化反应速率密切相关,曝气强度为100 m3·(m2·h)-1时,NH4 -N降解速率最佳达24.25 mg·(L·h)-1,系统硝化性能稳定.影响系统脱氮的主要因素是反硝化速率,曝气强度为69 m3(m2·h)-1时,对NO3--N的利用率为10.98 mg·(L·h)-1,出水NO3--N浓度为4.4 mg·L-1,滞留在厌氧段的浓度3.5 mg·L-1为最低,反硝化效果最好.曝气过量或不足时反硝化速率都低.在保证系统处理能力的同时,大的交换比0.35有利于系统脱氮运行.C/N比为2时,反硝化速率最高,>2时出现NO2--N的积累.  相似文献   

9.
进水C/N对富集聚磷菌的SNDPR系统脱氮除磷的影响   总被引:1,自引:0,他引:1  
为了解富集聚磷菌(PAOs)的同步硝化反硝化除磷(SNDPR)系统的脱氮除磷特性,采用延时厌氧(180min)/低氧(溶解氧0.5~1.0mg/L)运行的SBR反应器,以实际生活污水为处理对象, 通过投加固态乙酸钠调节进水C/N值(约为11,8,4,3),考察其对系统脱氮除磷特性及同步硝化反硝化(SND)脱氮率的影响.结果表明:C/N对系统的除磷性能没有影响,出水PO43--P浓度均稳定在0.3mg/L左右,这是由于系统内聚磷菌(PAOs)含量高,且在低氧段可同时发生好氧吸磷与反硝化吸磷.随着C/N的增大,出水NH4+-N浓度升高,C/N下降时,出水NO3--N浓度升高.此外,随着C/N的减小,厌氧段反硝化所消耗的COD占进水COD的比例增大,SND可利用的内碳源-PHAs储存量减少,但PHV的利用率增加;当C/N为4~8时,SND现象最明显,SND脱氮率达50.8%,而其它C/N条件下,SND脱氮率都有相应程度的减弱.C/N为8时,系统出水综合指标最好,TN去除率高达80.8%.  相似文献   

10.
采用连续流反应器处理生活污水,保持厌氧段格室为3格,将缺氧段格室从2格减少至0格,好氧段格室由5格逐渐增加至7格,Run1时对好氧段格室采用连续曝气,Run2~Run4时采用间歇曝气,曝/停比分别为40min/20min、40min/30min、40min/40min,硝化液回流比从150%逐渐减少至0%。Run4时,平均进水COD、NH4+-N、TN、PO43--P浓度分别为259.34、60.26、64.42、6.10mg·L-1,出水COD、NH4+-N、TN、PO43--P分别为26.40、1.03、5.84、0.30mg·L-1。反应器对氮素的去除量从Run1时的192.30mg·h-1逐渐增加至Run4时的244.00mg·h-1,相应的去除率从65.40%逐渐增大至95.30%;从Run1至Run4,反硝化聚磷菌和聚磷菌的活性分别从36.05%和38.20%增大至140.50%和133.40%;通过间歇曝气在连续流反应器中实现了同步硝化反硝化除磷脱氮,为污水处理厂提标改造提供参考。  相似文献   

11.
为了解厌氧/好氧/缺氧(A/O/A)运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步短程硝化反硝化(SPND)耦合,并后置短程反硝化的脱氮除磷特性,以低C/N(≤4)城市污水为处理对象,通过优化曝气量和缺氧时间,实现了低C/N城市污水的深度脱氮除磷.结果表明,当好氧段曝气量由1.0 L·min-1降至0.6 L·min-1,缺氧时间为180 min时,出水PO3-4-P浓度由0.06 mg·L~(-1)降至0,出水NH+4-N、NO-2-N和NO-3-N浓度分别由0.18、18.79和0.08 mg·L~(-1)逐渐降低至0、16.46和0.05 mg·L~(-1),TN去除率由72.69%提高至77.97%;随着曝气量的降低,SPND现象愈加明显,SND率由19.18%提高至31.20%;此后,当缺氧段时间由180 min逐渐延长至420 min,出水PO3-4-P、NH+4-N和NO-3-N浓度分别维持在0、0和0.03 mg·L~(-1)左右,出水NO-2-N低至3.06 mg·L~(-1),SND率达32.21%,TN去除性能逐渐提高,TN去除率高达99.42%,实现了系统的深度脱氮除磷.  相似文献   

12.
味精废水厌氧氨氧化生物脱氮的研究   总被引:28,自引:0,他引:28  
采用厌氧氨氧化工艺(ANAMMOX)处理味精废水,结果显示,总氮容积去除负荷可达457 mg·L-1·d-1,高于传统硝化-反硝化工艺,可成为传统硝化-反硝化工艺的替代技术.厌氧氨氧化菌对NO2--N的耐受范围为96.5~129 mg·L-1.受基质NO2--N抑制后,厌氧氨氧化反应器难以自行恢复,将基质浓度稀释到临界浓度以下则可恢复效能.反应器对进水cNO2-N/cNH4 -N比值有一定的适应能力.在所试的进水cNO2--N/cNH4 -N比值(1.0~1.4)范围内,出水基质浓度基本保持不变.  相似文献   

13.
为了解同步硝化内源反硝化系统(SNEDPR)脱氮除磷性能,采用延时厌氧(180 min)/低氧(溶解氧0. 5~2. 0 mg·L~(-1))运行的SBR反应器,以人工配置的模拟废水为处理对象,先采用恒定进水C/N(为10),以实现SNEDPR的启动和聚磷菌(PAOs)的富集培养,再调控进水C/N值(分别为10、7. 5、5和2. 5),考察不同C/N对系统的脱氮除磷性能的影响.结果表明,当进水C/N为10,可实现SNEDPR的启动与深度脱氮除磷,出水PO3-4-P和总氮(TN)浓度分别平均为0. 1 mg·L~(-1)和8. 1mg·L~(-1),PO3-4-P去除率、TN去除率和SNED率平均值分别为99. 79%、89. 38%和58. 0%.当进水C/N由5提高至10时,系统维持良好的脱氮除磷性能,释磷量(PRA)和SNED率分别由16. 0 mg·L~(-1)和48. 0%提高至24. 4 mg·L~(-1)和69. 2%;当C/N为10时,TN和PO3-4-P去除率最高达94. 5%和100%;当C/N为2. 5时,系统失去脱氮、除磷性能,PRA和SNED率仅为1. 36 mg·L~(-1)和10%.在系统稳定运行阶段(C/N为10、7. 5和5),SNED率达85. 9%,出水NH_4~+-N、NO-x-N和PO3-4-P浓度平均为0、8. 1和0. 1 mg·L~(-1).  相似文献   

14.
冷璐  信欣  鲁航  唐雅男  万利华  郭俊元  程庆锋 《环境科学》2015,36(11):4180-4188
以低COD/N生活污水(C/N为3∶1~4∶1)为进水基质,在序批式活性污泥反应器(SBR)中接种好氧颗粒污泥(AGS),通过逐步降低溶解氧(DO)浓度的方式快速实现同步硝化反硝化耦合除磷.反应器运行20 d后(DO浓度为0.50~1.0mg·L-1),系统出现同步硝化反硝化耦合除磷的现象.在随后运行的40 d里,反应器对废水COD、NH+4-N、TN和TP的平均去除率分别为84.84%、93.51%、77.06%和85.69%;出水NO-3-N和NO-2-N平均浓度分别为4.01 mg·L-1和3.17 mg·L-1.反应器启动运行后期,污泥体积指数(SVI)为55.22 m L·g-1,沉降性能良好,颗粒结构较完整.不同氮源的周期曝气阶段结果表明,对TN的去除率为NH+4-NNO-2-NNO-3-N;对TP的去除率为NO-3-NNO-2-NNH+4-N,反应器主要以同步硝化反硝化脱氮和反硝化方式除磷.  相似文献   

15.
为实现低C/N城市污水与含硝酸盐废水的同步处理,采用SBR接种活性污泥,通过合理控制厌氧/缺氧/低氧时间和性进行了研究。结果表明采用厌氧/低氧的运行方式,控制厌氧时间为3h,好氧段DO浓度为0.5~1.0mg·L-1,60d可实现同步硝化内源反硝化除磷(SNEDPR)系统的启动,出水PO43--P浓度0.5mg·L-1,系统氮磷去除率维持在90%以上,COD的去除率维持在80%以上,系统SNED率和CODins率分别维持在70%和95%左右;随后改变运行方式,采用厌氧/缺氧/低氧的方式运行,缺氧段前进含硝酸盐废水,45d可实现DPR-SNED系统的启动,缺氧末PO43--P浓度1.1mg·L-1,出水PO43--P浓度0.5mg·L-1,系统磷、COD去除率均维持在90%以上,氮去除率维持在88%以上,系统SNED率和CODins率分别维持在62%和90%左右。DPR-SNED系统的成功启动后,厌氧段聚糖菌和聚磷菌对城市污水有限碳源的充分利用和强化储存,可为后续缺氧段及好氧段的脱氮除磷提供充足的内碳源。此外,DPR-SNED系统缺氧段内源短程反硝化的进行保障了系统在低C/N(4)条件下的高效脱氮。  相似文献   

16.
针对生活污水低碳氮比的水质特点,采用SBR反应器接种低温储存的强化生物除磷颗粒污泥,来启动除磷亚硝化颗粒工艺,通过控制曝气强度及污泥龄实现除磷亚硝化的稳定运行,为后置CANON或厌氧氨氧化工艺(ANAMMOX)提供进水。污泥龄为30d的条件下实现了出水TP小于0.5mg·L-1,COD浓度小于50mg·L-1,亚硝酸盐氮积累率达到了90%以上。实验还得出,过高的曝气强度使除磷亚硝化性能恶化,可采用降低曝气强度和减小污泥龄的方式来改善除磷性能。污泥龄为40d可以实现生活污水除磷亚硝化中的亚硝化性能进一步恢复,最终实现出水磷浓度保持在0.5mg·L-1以下,COD及TP去除率分别稳定在80%及95%,亚硝酸盐积累率保持在90%以上,SVI值从初始的63mL·g-1降低到35mL·g-1,颗粒污泥沉降性能良好,颗粒粒径在整个运行过程中保持在1000μm以上。  相似文献   

17.
GFH用于提高再生水回用景观水水质研究   总被引:2,自引:1,他引:2  
李娜  杨建  赵璇  成徐州  常江  甘一萍 《环境科学》2010,31(10):2354-2359
研究了再生水回用于景观水体过程中,GFH(granulated ferric hydroxide)对磷、DOM和氮等污染物的吸附去除机制.结果表明,GFH对磷的去除效果最显著,TP浓度为0.059~0.725mg/L、PO34--P浓度为0.004~0.684mg/L的进水,GFH出水能够实现TP0.05mg/L(去除率91.1%)、PO43--P0.023mg/L(去除率95.4%);GFH优先去除DOM中大分子的腐殖酸,实现对DOM28.5%的去除率,同时提高DOM的芳香性;由于GFH和臭氧的强氧化性,再生水中NH4+-N和NO2--N可发生硝化反应,NH4+-N平均去除率达37.3%,NO2--N平均去除率达59%.  相似文献   

18.
SBR中反硝化聚磷菌的培养驯化研究   总被引:6,自引:1,他引:5  
以某污水处理厂活性污泥作为种泥、生活污水作为原水,采用间歇反应器进行反硝化聚磷菌的培养驯化研究。结果表明,以进水-闲置-厌氧-缺氧-沉淀-排水的运行方式运行40d后,出水PO43--P的浓度稳定在0.2mg/L以下,去除率达95%;出水NH4+-N浓度稳定在8mg/L以下,去除率达90%。NO3--N的消耗量和PO43--P的吸收量呈线性关系,表明采用间歇反应器进行反硝化菌的培养驯化是可行的。  相似文献   

19.
为了解同步短程硝化内源反硝化除磷(SPNDPR)系统的脱氮除磷特性,以低C/N城市污水为处理对象,采用延时厌氧(180 min)/好氧运行的SBR反应器,通过联合调控曝气量和好氧时间,考察了该系统启动与优化运行特性.结果表明,当系统好氧段曝气量为0. 8 L·min~(-1),好氧时间为150 min时,出水PO_4~(3-)-P浓度约为1. 5 mg·L~(-1)左右,出水NH_4~+-N和NO_3~--N浓度由10. 28 mg·L~(-1)和8. 14 mg·L~(-1)逐渐降低至0 mg·L~(-1)和2. 27 mg·L~(-1),出水NO_2~--N浓度逐渐升高至1. 81 mg·L~(-1);当曝气量提高至1. 0 L·min~(-1)且好氧时间缩短至120min后,系统除磷、短程硝化性能逐渐增强,但总氮(TN)去除性能先降低后逐渐升高,最终出水PO_4~(3-)-P、NH_4~+-N分别稳定低于0. 5 mg·L~(-1)和1. 0 mg·L~(-1),好氧段亚硝积累率和SND率分别达98. 65%和44. 20%,TN去除率达79. 78%. SPNDPR系统内好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化同时进行保证了低C/N污水的同步脱氮除磷.  相似文献   

20.
不同磷浓度下生物除磷颗粒系统的COD需求   总被引:2,自引:2,他引:0  
李冬  曹美忠  郭跃洲  梅宁  李帅  张杰 《环境科学》2018,39(7):3247-3253
本试验采用SBR反应器,接种成熟的生物除磷颗粒,通过分阶段改变进水中总磷(TP)和COD浓度,研究了不同磷浓度条件下COD负荷对生物除磷颗粒系统的影响,得出不同磷浓度下生物除磷颗粒系统具有良好性能所需最低COD浓度.结果表明,进水TP浓度为10 mg·L-1时,生物除磷颗粒系统维持良好性能所需最低COD浓度为175 mg·L-1,出水TP浓度在0.5mg·L-1以下,颗粒粒径和SVI分别为1 020μm和36 m L·g-1,PN和PS含量(以MLSS计)分别为78 mg·g~(-1)和39 mg·g~(-1),PN/PS较低,颗粒具有较好的结构和性能.进水TP浓度为6 mg·L-1时,生物除磷颗粒系统良好除磷性能所需最低COD浓度为150 mg·L-1,出水TP浓度在0.3 mg·L-1以下,颗粒粒径和SVI分别为960μm和35 m L·g-1,PN和PS含量分别为75 mg·g~(-1)和35 mg·g~(-1),PN/PS较低,颗粒具有较好的结构和性能.整个运行过程中,COD去除率在83%以上,出水COD浓度在25mg·L-1以下.在不同磷浓度条件下,随着进水COD浓度降低,微生物分泌PN和PS含量均减少,PN/PS增大,颗粒粒径减小,SVI增加,颗粒的结构和性能恶化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号