首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
湿地甲烷的产生、氧化及排放通量研究进展   总被引:18,自引:0,他引:18  
甲烷研究已倍受科学界关注,不仅由于其对全球变暖的贡献仅次于二氧化碳,贡献率达25%,还因为单分子甲烷的增值潜势是二氧化碳的15~30倍.湿地是甲烷的重要来源,估计湿地生态系统对全球甲烷排放的贡献率约为20%,即为100~200Tg a?1.湿地甲烷在厌氧条件下产生,在土壤氧化层以及根际中部分氧化,然后通过土壤、水体和植物体排放到大气中去.就近10a来湿地甲烷产生、氧化、传输过程及其影响因素等的研究进展进行了综述.产甲烷菌的研究主要集中在其对环境因子的生理生态和分子生物学,尤其集中在稻田产甲烷菌的研究上,因此在深度和广度上都有待突破.产甲烷过程是一个复杂的生化过程,要对甲烷排放量估计、甲烷排放动态研究以及在甲烷排放建模等方面取得进展,必需在甲烷产生机制上进行突破.甲烷氧化菌的研究集中于菌群对环境的适应以及其自身氧化能力上,应用研究还不是很深入.甲烷氧化过程的研究已经有了一定的深度,但氧化过程具体机理的研究还有待进一步深入,这需要分子生物学以及基因组学等多学科的交叉.甲烷传输过程是研究甲烷排放动态的基础,目前相关研究较少,国内有关研究主要集中在稻田研究上,对高寒湿地的研究则几乎是空白.湿地甲烷通量的研究是目前温室气体研究的热点问题,但主要解决的问题是大气中甲烷气体浓度增加与湿地甲烷通量的关系.湿地甲烷通量是由多种因素决定的,对影响湿地甲烷通量的因素的研究相当丰富,特别是近年来对生物因素的关注.由于学科的发展,近10a在这方面的研究较之过去更为全面和系统.图1表1参68  相似文献   

2.
森林土壤氧化(吸收)甲烷研究进展   总被引:1,自引:0,他引:1  
甲烷是一种重要的温室气体,对全球气候变暖的贡献仅次于CO2,约为25%。大气甲烷可以被土壤中甲烷氧化细菌在有氧条件下吸收利用,陆地生态系统森林土壤氧化吸收甲烷的研究已有大量报道。甲烷氧化菌是以甲烷作为唯一的碳源和能源的一类细菌的总称。但森林土壤在全球甲烷核算中具有一定的不确定性,取决于产甲烷菌和甲烷氧化菌的相对活性。甲烷氧化菌的研究集中在环境对氧化能力的影响和自身氧化能力上。大气甲烷氧化过程为高氧化能力低亲力氧化,受到一些因子,如土壤温度、土壤通气状况、pH、氮肥等的影响,具体机理的研究还有待进一步深入。土壤通气状况受土壤质地与土壤水分影响,土地利用类型可能改变土壤容重、土壤结构和土壤水分,进而影响土壤甲烷氧化。植物可以通过自身对生境的作用或化感作用影响土壤甲烷氧化。土壤动物的研究则相对较少,目前排放清单中仅有白蚁是全球甲烷核算所包括的。从甲烷氧化菌的分类出发,对甲烷氧化菌氧化甲烷的机理、菌的生态分布及甲烷氧化的影响因素、时空异质性、观测方法等作出了综述,为正确认识和准确预测森林土壤在一定气候和土地利用类型条件下的甲烷氧化强度提供理论依据。  相似文献   

3.
综述了缺氧嗜甲烷古菌的分布、生态位、形态与代谢特征的新发现,并讨论了其与产甲烷菌的关系.在无氧条件下,缺氧嗜甲烷古菌与硫酸盐还原菌互养,氧化甲烷气体以阻止其进入大气.缺氧嗜甲烷古菌主要分布于深海甲烷渗漏区和冷泉区域,在其他多种缺氧环境中也能发现,由于还未获得纯培养,对这类微生物的生态位知之甚少.其细胞呈球状、杆状,有时聚集成球状集合体或连接形成丝状体.缺氧甲烷氧化可能经过"反甲烷合成"、"甲基合成"等路径.嗜甲烷古菌与产甲烷菌有着较近的亲缘关系,并且存在许多相似点.图1表1参37  相似文献   

4.
甲烷氧化菌能够以甲烷作为唯一碳源和能源物质生存.在甲烷氧化、氯代烃类污染物降解、相关化学品生产等方面具有重要的潜力.利用甲烷作为唯一碳源物质筛选分离得到一株甲烷氧化菌,并对其进行初步鉴定.在此基础上,利用单因子实验和Plackett_Burman实验等方法对获得菌株的培养条件:包括培养基条件(无机氮源种类和浓度、影响显著的金属离子及其浓度、p H值)以及培养温度进行优化.结果表明:经过16S r DNA鉴定,获得菌株与Methylocystis sp.SC2、Methylocystis hiersuta strain SV97等菌株的相似性达到99%,所以确定该菌株属于Methylocystis菌属(Ⅱ型甲烷氧化菌,甲基孢囊菌属),将本菌株命名为Methylocystis sp.M16.以1.0 g/L NH4NO3作氮源,1.0μmol/L铜离子,p H 7.00,温度30℃的条件下,甲烷去除率和菌体生物量最大.在各个因素的最优条件下,Methylocystis sp.M16菌液吸光值(A600 nm)均在0.5以上,甲烷去除率在95%以上.本研究分离得到一株Ⅱ型甲烷氧化菌Methylocystis sp.M16,并获得优化的培养基和培养条件,有望为M16菌应用提供理论参考.  相似文献   

5.
影响厌氧氨氧化与甲烷化反硝化耦合的因素   总被引:5,自引:0,他引:5  
氨氮、氮氧化物对产甲烷菌有一定的抑制作用,但可以通过驯化去除毒性.亚硝酸盐在厌氧氨氧化菌作用下与氨发生厌氧氨氧化反应.虽然厌氧氨氧化菌是自养菌,但具有异养代谢能力,并且NO2可提高厌氧氨氧化菌的活性.因此,通过特殊的反应器技术,将厌氧氨氧化菌与甲烷菌、反硝化菌复合在一个有利的微生态环境中,充分发挥它们之间的协同耦合作用,把有机物转化为清洁能源又同时脱氮,是极有前景的废水厌氧(缺氧)处理研究新方向.表1参31  相似文献   

6.
甲醇对土壤甲烷氧化的影响及其微生物学机理   总被引:2,自引:0,他引:2  
对设施栽培土壤甲烷氧化及其微生物学机理进行了研究,结果表明,不同土壤对甲烷的氧化能力各异,这可能与土壤的理化性质有关。土壤微生物是甲烷氧化的主要生物类群,不同碳源对甲烷氧化的影响各异,纤维素对甲烷氧化的抑制作用最小,高浓度的甲醇则对甲烷氧化具有强烈的抑制作用,而适当浓度的甲醇可极大地促进土壤甲烷的氧化。在甲烷释放极少的设施栽培土壤中,兼性营养甲烷氧化菌可能在甲烷氧化中占据主导地位。  相似文献   

7.
冻土土壤中的甲烷代谢微生物可氧化或产生甲烷,影响着甲烷所参与的碳循环过程,对于全球温室气体的释放和调节具有重要的作用.对祁连山冻土区土壤活动层与冻土层中的甲烷代谢微生物产甲烷菌(Methanogens)和甲烷氧化菌(Methanotrophs)的群落结构组成进行研究.通过对产甲烷菌的mcrA基因和甲烷氧化菌的pmoA基因进行PCR扩增,分别构建其基因克隆文库,并通过序列同源比对进行系统发育分析和多样性分析.结果显示:冻土土壤活动层中的产甲烷菌包括Rice cluster Ⅰ、Methanosarcinaceae、Methanomicrobiales、Methanosaetaceae、Methanobacteriaceae五种类型,而在土壤冻土层则包括了Rice cluster Ⅰ、Methanosarcinaceae、Methanobacteriaceae三种类型.土壤活动层的甲烷氧化菌由隶属于α-Proteobacteria(Type Ⅱ)的Methylocystis和隶属于γ-Proteobacteria(Type Ⅰ)的Methylobacter两种类型群体组成,而土壤冻土层中则只包括了Methylocystis这一种类型.由此可见,冻土土壤活动层与冻土层中的甲烷代谢微生物群落结构存在一定的差异.  相似文献   

8.
甲烷是仅次于二氧化碳的第二大温室气体,也是典型的可再生资源.目前大气中的甲烷约有74%来自微生物互营产甲烷过程.研究微生物互营产甲烷对于控制全球气候变暖和发展清洁能源都具有重要意义.本文主要对产甲烷菌的类型、互营产甲烷的过程、电子传递等方面进行综述.典型的有机物厌氧互营氧化要经历3个步骤,主要由3种不同的菌群完成,即发酵菌、互营菌和产甲烷菌.互营产甲烷过程释放的能量很低.在互营产甲烷过程中存在互营菌的种内电子传递和互营菌与产甲烷菌的种间电子传递.反向电子传递是互营菌种内电子传递的一种方式,表现为电子歧化和电子聚合,都需要消耗能量使得热力学上不利的氧化还原反应得以发生.种间电子传递包括种间氢气转移、种间甲酸转移和种间直接电子传递3种方式.未来人们可以利用基因敲除、高通量测序、计算生物学等方法研究互营微生物间底物和电子的传递,以及互营菌群对环境变化的响应机制,以便将互营产甲烷过程应用于实际生产.  相似文献   

9.
随着水环境外污染源得到有效控制,底质污染逐渐成为人们关注的焦点.底质中的污染物尤其是难降解有机物可通过生物富集和生物放大等过程,进一步影响陆生生物和人类的健康.因此,对底质中难降解有机物的修复是目前所迫切需要解决的环境问题之一.基于异位修复成本较高易造成二次污染等缺点,文章针对难降解有机物污染底质,探讨了原位修复技术的研究进展,自然修复成本较低,对生态环境不产生干扰,但不适用于高浓度污染底质;植物修复操作简单,能有效防止污染底质再悬浮,但对高浓度难降解有机物耐受性较低;微生物修复适用范围广,修复效果较为显著,但菌体易流失,对环境的适应性较差.于是,固定化修复技术应运而生,固定化技术能解决传统的微生物修复存在的很多问题,但固定化载体的重复可利用性和再生性问题仍有待解决.文章最后对今后难降解有机物污染底质的研究方向进行了展望,由于污染底质多为复合污染,各取所长的联合修复技术将成为未来的研究热点.  相似文献   

10.
常规的水处理工艺成熟,运行成本低,但其对难降解有机物的处理效果差,难以满足日益严格的排放标准.本文将催化湿式氧化法(CWAO)与催化湿式过氧化氢氧化法(CWPO)合称为催化湿式氧化/过氧化法,两者都具有效率高、占地少的显著特征,可以直接把难降解有机物分解为二氧化碳和水,已成为新的研究热点.本文综述了催化湿式氧化/过氧化法降解有机物的原理和进展,分析了催化剂对常规湿式氧化/过氧化反应过程的加速和降解效率的影响,讨论了催化湿式氧化/过氧化技术存在的主要制约瓶颈,提出了有机物的定向调控转化和资源化是今后减污降碳的主要方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号