共查询到20条相似文献,搜索用时 46 毫秒
1.
桑叶表面氟化物吸附积累规律的统计研究 总被引:9,自引:0,他引:9
以各气象因素和大气氟化物浓度为生态因子,对大田桑园中各叶位桑叶的氟化物的吸附积累规律,进行了统计分析和研究,建立了各叶位桑叶的氟化物的吸附积累模型。 相似文献
2.
大气污染事故预测系统的研究 总被引:2,自引:0,他引:2
将地理信息系统应用于城市突发性的大气污染事故,对大气扩散模型的图形技术进行开发研究。介绍了设计的总体结构;详细叙述了数学模型的建立、编程语言及其关键技术。该技术能模拟显示化学品泄漏后的大气污染扩散范围,为应急反应科学决策服务。 相似文献
3.
本文详细地介绍了日本大气污染现状及其趋势,对主要污染物的污染状况进行了分析。概述了日本几十年来大气污染防治技术研究的进展。对改善燃烧、电子束法、NO_x处理触媒研究、NO_x吸附剂的研究、活性炭法干式脱硫、利用煤炭的干式脱硫、半干式简易脱硫、静电的应用、微生物的应用、电除尘、过滤除尘等大气污染防治技术的研究,做了详细介绍。对目前人们普遍关心的含氟气体排放控制问题进行了探讨。还简要介绍了日本大阪府等地,准备偿试的汽车排气总量控制的研究状况。 相似文献
4.
为了对环境质量进行综合评价,运用误差反向传播算法的人工神经网络方法建立了环境质量评价的B-P决策模型。用此模型研究实例的大气环境质量,结果表明B-P网络用于环境质量评价具有客观性和实用性。 相似文献
5.
6.
7.
在小样本数据的情况下,采用粒子群优化算法(PSO)对传统支持向量回归机(SVR)进行改进,将其应用于北京某大型污水处理厂出水总氮浓度预测上。 预测结果精度对比分析表明,PSO-SVR模型预测结果平均相对误差为1.836%,决定系数为67.76%,均方根误差为0.693 9,各评价指标均优于多元线性回归模型、BP神经网络模型。因此在小样本情况下,利用PSO-SVR模型对污水处理厂出水总氮浓度进行预测是可行有效的,为应用数据驱动模型对污水处理过程进行建模模拟提供了一种新方法尝试。 相似文献
8.
9.
基于径向基函数网络的溢油预测模型 总被引:1,自引:0,他引:1
为了提高溢油预测的准确性,建立和优化溢油预测模型,提出了基于径向基函数网络模型的溢油预测方法,实现溢油预测功能.径向基函数网络模型解决了模拟预测过程中样本库巨大、函数模型收敛速度慢的问题.通过选择有效的输入参数和样本数据,建立局部逼近网络;通过径向基函数训练样本数据,利用输出值与实际值之间的误差作为约束条件调整权重因子、径向基中心和宽度,加快函数模型的收敛速度.该模型模拟了溢油的漂移、扩散过程,达到预测的目的.利用该模型,建立了溢油预测模块,并针对一次溢油事故进行预测模拟,验证了该模型的可行性,能够为应急决策提供一定的支持. 相似文献
10.
11.
通过对反向传播人工神经网络的算法和网络结构的研究,发现拟牛顿算法训练速度较快,能够较好地接近误差目标值,同时建立了包括输入层、隐含层、输出层的人工神经网络三层拓扑结构。通过对街道峡谷人工神经网络的训练,模拟计算了街道峡谷NOx浓度分布值。结果显示,训练误差和测试误差比为1.11,训练样本的模拟值与实测值的相关系数为0.93,测试样本的模拟值与实测值的相关系数为0.87,模拟值与实测值的相关系数均高于显著水平为α=0.05与α=0.01所对应检验性表的相关系数临界值。该模型能够用于街道峡谷污染物浓度的模拟计算,具有较好的泛化能力。 相似文献
12.
Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting
McKendry IG 《Journal of the Air & Waste Management Association (1995)》2002,52(9):1096-1101
Multi-layer perceptron (MLP) artificial neural network (ANN) models are compared with traditional multiple regression (MLR) models for daily maximum and average O3 and particulate matter (PM10 and PM2.5) forecasting. MLP particulate forecasting models show little if any improvement over MLR models and exhibit less skill than do O3 forecasting models. Meteorological variables (precipitation, wind, and temperature), persistence, and co-pollutant data are shown to be useful PM predictors. If MLP approaches are adopted for PM forecasting, training methods that improve extreme value prediction are recommended. 相似文献
13.
Keskin Gülşen Aydın Doğruparmak Şenay Çetin Ergün Kadriye 《Environmental science and pollution research international》2022,29(45):68269-68279
Environmental Science and Pollution Research - The dilemma between health concerns and the economy is apparent in the context of strategic decision making during the pandemic. In particular,... 相似文献
14.
15.
16.
基于人工神经网络的街道峡谷NO_x浓度的数值模型研究 总被引:1,自引:0,他引:1
通过对反向传播人工神经网络的算法和网络结构的研究,发现拟牛顿算法训练速度较快,能够较好地接近误差目标值,同时建立了包括输入层、隐含层、输出层的人工神经网络三层拓扑结构。通过对街道峡谷人工神经网络的训练,模拟计算了街道峡谷NOx浓度分布值。结果显示,训练误差和测试误差比为1.11,训练样本的模拟值与实测值的相关系数为0.93,测试样本的模拟值与实测值的相关系数为0.87,模拟值与实测值的相关系数均高于显著水平为α=0.05与α=0.01所对应检验性表的相关系数临界值。该模型能够用于街道峡谷污染物浓度的模拟计算,具有较好的泛化能力。 相似文献
17.
Shi En Shang Yanchen Li Yafeng Zhang Miao 《Environmental science and pollution research international》2021,28(34):46176-46185
Environmental Science and Pollution Research - To analyze the cumulative risks to the water environment, the backpropagation artificial neural network (BP-ANN), a self-adapting algorithm, was... 相似文献
18.
Hong Zhang Yong Liu Rui Shi Qingchen Yao 《Journal of the Air & Waste Management Association (1995)》2013,63(7):755-763
Primary fine particulate matters with a diameter of less than 10 µm (PM10) are important air emissions causing human health damage. PM10 concentration forecast is important and necessary to perform in order to assess the impact of air on the health of living beings. To better understand the PM10 pollution health risk in Taiyuan City, China, this paper forecasted the temporal and spatial distribution of PM10 yearly average concentration, using Back Propagation Artificial Neural Network (BPANN) model with various air quality parameters. The predicted results of the models were consistent with the observations with a correlation coefficient of 0.72. The PM10 yearly average concentrations combined with the population data from 2002 to 2008 were given into the Intake Fraction (IF) model to calculate the IFs, which are defined as the integrated incremental intake of a pollutant released from a source category or a region over all exposed individuals. The results in this study are only for main stationary sources of the research area, and the traffic sources have not been included. The computed IFs results are therefore under-estimations. The IFs of PM10 from Taiyuan with a mean of 8.5 per million were relatively high compared with other IFs of the United States, Northern Europe and other cities in China. The results of this study indicate that the artificial neural network is an effective method for PM10 pollution modeling, and the Intake Fraction model provides a rapid population risk estimate for pollutant emission reduction strategies and policies.
Implications The PM10 (particulate matter with an aerodynamic diameter ≤10 μm) yearly average concentration of Taiyuan, with a mean of 0.176 mg/m3, was higher than the 65 μg/m3 recommended by the U.S. Environmental Protection Agency (EPA). The spatial distribution of PM10 yearly average concentrations showed that wind direction and wind speed played an important role, whereas temperature and humidity had a lower effect than expected. Intake fraction estimates of Taiyuan were relatively high compared with those observed in other cities. Population density was the major factor influencing PM10 spatial distribution. The results indicated that the artificial neural network was an effective method for PM10 pollution modeling. 相似文献
19.
Wavelet transform-based artificial neural networks (WT-ANN) in PM10 pollution level estimation, based on circular variables 总被引:1,自引:0,他引:1
Shekarrizfard M Karimi-Jashni A Hadad K 《Environmental science and pollution research international》2012,19(1):256-268
Introduction
In this paper, a novel method in the estimation and prediction of PM10 is introduced using wavelet transform-based artificial neural networks (WT-ANN). 相似文献20.
Studies of air quality predictors based on neural networks 总被引:1,自引:0,他引:1
《国际环境与污染杂志》2011,19(5):442-453
In recent years, urban air pollution has emerged as an acute problem because of its negative effect on health and living conditions. Regional air quality problems, in general, are linked to violations of specified air quality standards. The current study aims to find neural network based air quality predictors, which can work with a limited number of datasets and are robust enough to handle data with noise and errors. A number of available variations of neural network models, such as the Recurrent Network Model (RNM), the Change Point Detection Model with RNM (CPDM), the Sequential Network Construction Model (SNCM), the Self Organising Feature Model (SOFM), and the Moving Window Model (MWM), were implemented using MATLAB software for predicting air quality. Developed models were run to simulate and forecast based on the annual average data for 15 years from 1985 to 1999 for seven parameters, viz. VOC, NOx, CO, SO2, PM10, PM2.5 and NH3 for one county of California, USA. The models were fitted with first nine years of data to predict data for remaining six years. The models, in general, could predict air quality patterns with modest accuracy. However, the SOFM model performed extremely well in comparison with the other models for predicting long-term (annual) data. 相似文献