首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
吴春英 《环境化学》2013,(9):1674-1679
采用模拟生活污水,在相同的运行条件下,对比研究了膜-生物反应器(MBR)与序批式活性污泥法(SBR)对10种典型药品和个人护理品(PPCPs)的去除效果.研究结果表明,两种反应器对不同目标物PPCPs的去除效果存在一定的差异:MBR和SBR对甲氧苄氨嘧啶(TRM)和红霉素(ERY)的去除无明显差别;苏必利(SLP)和卡马西平(CBZ)在两反应器中均不能得到有效去除;但对于其他目标物,尤其是咖啡因(CAF)、酮洛芬(KTP)、避蚊胺(DEET),MBR的去除率明显高于SBR.总体上,MBR在出水的安全性和稳定性上存在着一定的优势.  相似文献   

3.
陈跃卫  申哲民 《环境化学》2022,41(2):673-682
超临界水氧化(SCWO)作为一项高效的去除水体中有机污染物的技术已得到了广泛的应用.为了更好地理解含氮有机物污染物在SCWO中总氮(TN)去除的规律,本研究以定量构效关系(QSAR)模型为方法,构建了41种含氮有机污染物在SCWO中TN%与有机污染物分子量子化学参数之间的QSAR模型.其最优QSAR模型结果为TN%=8...  相似文献   

4.
以膜生物反应器中的活性污泥为研究对象,考察接种驯化至膜污染时期的微生物群落结构的特征和演变过程.在试验运行中,定期采集样品提取DNA,并应用PCR-DGGE技术探究微生物菌群的变化.结果表明,在反应器运行接种5 d后,微生物群落结构已发生较大改变,与接种污泥相似性指数下降到47.8%;在运行的整个过程中,微生物种群多样性都要低于接种污泥,随着处理工艺运行,种群间进行逐步有序的演替.在运行后期,跨膜压力增速提高,此时占优势地位的菌种是Enterococcus faecalis、Comamonas sp.、不可培养的Fusobacterium sp.,可能是导致膜污染的主要菌种.  相似文献   

5.
俞娅菲  雷宇  范梦鸽  雷鑫  赵姗姗  杨欣 《环境化学》2021,40(12):3651-3661
本研究探究了膜-UV/氯组合工艺对污水二级出水中23种微量有机污染物(TrOCs)的降解动力学和降解机制,并考察了该组合工艺中卤代消毒副产物(X-DBPs)的生成及其生成潜能(X-DBPsFP),同时对处理后水样的细胞毒性和基因毒性进行了评估.结果 表明,膜预处理能有效促进UV/氯体系中TrOCs的降解,且纳滤(NF)...  相似文献   

6.
《环境化学》2013,(6):1116
类雄激素物质和类抗雄激素物质属于内分泌干扰物,它们对水生生物的内分泌干扰作用已经在实验室和自然环境中得到证实.众所周知,污水再生利用是解决越来越严重的水资源短缺的重要途径.但是,如果再生水中存在类雄激素物质和类抗雄激素物质,就会对人类及水生生物造成潜在的风险.因此,研究类雄激素物质和类抗雄激素物质在再  相似文献   

7.
为了探讨盐酸小檗碱对小鼠的DNA损伤和氧化性损伤。随机选取30只小鼠分成对照组以及7.5,15,30,60与120 mg?kg-1实验组,处理后,应用小鼠脾细胞进行彗星实验与抗氧化酶实验。测定DNA损伤情况以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性以及丙二醛(MDA)含量变化。对盐酸小檗碱的DNA损伤与氧化性损伤作用进行比较研究。研究结果表明:彗星实验中,随着盐酸小檗碱浓度的增加,尾部DNA含量、尾长与尾矩均增加,与阴性对照组相比差异有统计学意义(p<0.05或p<0.01),且呈剂量-效应关系;超氧化物歧化酶(SOD)与过氧化氢酶(CAT)活性随盐酸小檗碱剂量增加逐渐降低,丙二醛(MDA)含量明显下降,过氧化物酶(POD)活性在7.5 mg?kg-1时上升,而后逐渐下降。在60 mg?kg-1和120 mg?kg-1时,有极显著性差异(p<0.01)产生。由此可见,盐酸小檗碱对小鼠脾细胞有一定的损伤作用,能够引起小鼠脾细胞的DNA损伤和氧化性损伤。  相似文献   

8.
Some organic compounds are major water pollutants. They can be toxic or carcinogenic even at low concentrations. Current technologies, however, fail to remove these contaminants to parts per billion (ppb) levels. Here we report on the removal of organic pollutants from water using cross-linked nanoporous polymers that have been copolymerized with previously functionalized carbon nanotubes. These novel polymers can remove model organic species such as p-nitrophenol by as much as 99% from a 10 mg/L spiked water sample compared to granular activated carbon and native cyclodextrin polymer that removed only 47 and 58%, respectively. These polymers have also demonstrated the ability to remove trichloroethylene (10 mg/L spiked sample) to non-detectable levels (detection limit <0.01 ppb) compared to 55 and 70% for activated carbon and native cyclodextrin polymers, respectively.  相似文献   

9.
Membrane bioreactor achieved mercury removal using nitrate as an electron acceptor. The biological mercury oxidation increased with the increase of oxygen concentration. Ferrous sulfide could make both Hg2+ and MeHg transform into HgS-like substances. Nitrate drives mercury oxidation through katE, katG, nar, nir, nor, and nos. Mercury (Hg0) is a hazardous air pollutant for its toxicity, and bioaccumulation. This study reported that membrane biofilm reactor achieved mercury removal from flue gas using nitrate as the electron acceptor. Hg0 removal efficiency was up to 88.7% in 280 days of operation. Oxygen content in flue gas affected mercury redox reactions, mercury biooxidation and microbial methylation. The biological mercury oxidation increased with the increase of oxygen concentration (2%‒17%), methylation of mercury reduced with the increase of oxygen concentration. The dominant bacteria at oxygen concentration of 2%, 6%, 17%, 21% were Halomonas, Anaerobacillus, Halomonas and Pseudomonas, respectively. The addition of ferrous sulfide could immobilize Hg2+ effectively, and make both Hg2+ and MeHg transform into HgS-like substances, which could achieve the inhibition effect of methylation, and promote conversion of mercury. The dominant bacteria changed from Halomonas to Planctopirus after FeS addition. Nitrate drives mercury oxidation through katE, katG, nar, nir, nor, and nos for Hg0 removal in flue gas.  相似文献   

10.
刘新  梁怀亮  施园  周川  许斌斌 《环境化学》2012,31(12):1901-1907
为解决低浓度污水处理工艺脱氮除磷过程中存在的微生物碳源不足的问题,本文研制了新型填料床-逐级曝气串联反应器.填料床分别采用珊瑚砂、竹炭颗粒、钢渣为填料,在好氧、厌氧兼顾的环境下,实现化学除磷、生物除氮.试验采用模拟生活污水,COD、TN、TP、氨氮的浓度为170—190 mg.L-1、27—30 mg.L-1、8—10 mg.L-1,23—25 mg.L-1.反应器在第27天启动成功,100 d稳定运行结果显示,当HRT为14 h,曝气池DO为3.5 mg.L-1,反应器处理效果良好,出水中COD、TN、TP、氨氮的浓度分别为30.7 mg.L-1、5.59 mg.L-1、1.0 mg.L-1、4.67 mg.L-1,达到《城镇污水处理厂污染物排放标准》(GB18918—2002)中的一级B排放标准.经钢渣填料床处理后的污水,TP浓度降到1 mg.L-1左右,在不排泥的情况下,实现TP的高效去除,同时有效避免了除磷与脱氮过程对碳源的竞争,实现了生物法对水体中富余氮、磷的高效去除.  相似文献   

11.
Nitrogen removal performance and nitrifying population dynamics were investigated in a redox stratified membrane biofilm reactor (RSMBR) under oxygen limited condition to treat ammonium-rich wastewater. When the NH4+-N loading rate increased from 11.1±1.0 to 37.2±3.2 gNH4+-N·m-2·d-1, the nitrogen removal in the RSMBR system increased from 18.0±9.6 mgN·d-1 to 128.9±61.7 mgN·d-1. Shortcut nitrogen removal was achieved with nitrite accumulation of about 22.3±5.3 mgNO2--N·L-1. Confocal micrographs showed the stratified distributions of nitrifiers and denitrifiers in the membrane aerated biofilms (MABs) at day 120, i.e., ammonia and nitrite oxidizing bacteria (AOB and NOB) were dominant in the region adjacent to the membrane, while heterotrophic bacteria propagated at the top of the biofilm. Real-time qPCR results showed that the abundance of amoA gene was two orders of magnitude higher than the abundance of nxrA gene in the MABs. However, the nxrA gene was always detected during the operation time, which indicates the difficulty of complete washout of NOB in MABs. The growth of heterotrophic bacteria compromised the dominance of nitrifiers in biofilm communities, but it enhanced the denitrification performance of the RSMBR system. Applying a high ammonia loading together with oxygen limitation was found to be an effective way to start nitrite accumulation in MABs, but other approaches were needed to sustain or improve the extent of nitritation in nitrogen conversion in MABs.  相似文献   

12.
• A dual “waste-to-resource” application of FO was proposed. • Performance of sea salt bittern as an economic FO draw solution was evaluated. • High quality struvite recovery from black water using FO was demonstrated. • Feed pH is a key factor to control the form of recovered phosphorous. A dual “waste-to-resource” innovation in nutrient enrichment and recovery from domestic black water using a sea salt bittern (SSB)-driven forward osmosis (FO) process is proposed and demonstrated. The performance of SSB as a “waste-to-resource” draw solution for FO was first evaluated. A synthetic SSB-driven FO provided a water flux of 25.67±3.36 L/m2⋅h, which was 1.5‒1.7 times compared with synthetic seawater, 1 M NaCl, and 1 M MgCl2. Slightly compromised performance regarding reverse solute selectivity was observed. In compensation, the enhanced reverse diffusion of Mg2+ suggested superior potential in terms of recovering nutrients in the form of struvite precipitation. The nutrient enrichment was performed using both the pre-filtered influent and effluent of a domestic septic tank. Over 80% of phosphate-P recovery was achieved from both low- and high-strength black water at a feed volume reduction up to 80%‒90%. With an elevated feed pH (~9), approximately 60%‒85% enriched phosphate-P was able to be recovered in the form of precipitated stuvite. Whereas the enrichment performance of total Kjeldahl nitrogen (TKN) largely differed depending on the strength of black water. Improved concentration factor (i.e., 3-folds) and retention (>60%) of TKN was obtained in the high-nutrient-strength black water at a feed volume reduction of 80%, in comparison with a weak TKN enrichment observed in low-strength black water. The results suggested a good potential for nutrient recovery based on this dual “waste-to-resource” FO system with proper management of membrane cleaning.  相似文献   

13.
过氧乙酸(peracetic acid,PAA)是一种广谱、高效、环保型消毒剂.近年来,基于活化过氧乙酸的高级氧化技术由于适用pH范围广、产生毒副产物少及具备一定剩余消毒能力等优点在水体有机污染物去除方面受到了越来越多的关注.本文介绍了 PAA的性质,综述了活化PAA技术去除水体有机污染物的基本原理及研究现状,分析了活...  相似文献   

14.
Water is an important resource for domestic, industrial, agricultural and recreational purposes. The quality of water is however significantly deteriorating due to the accumulation of organic pollutants in aqueous systems. Conventional water treatment technologies fail to remove these contaminants to desirable levels. Recent studies have revealed that cyclodextrin nanoporous polymers are capable of absorbing pollutants from water to parts per billion levels. We have demonstrated that functionalised cyclodextrin polymers have enhanced absorption capacities for some organic pollutants. Here we report the synthesis of several insoluble monosubstituted cyclodextrin polymers or “nanosponges”. We show that these polymers have improved abilities in the absorption of p-nitrophenol and pentachlorophenol from aqueous solutions.  相似文献   

15.
● Advances, challenges, and opportunities for catalytic water pollutant reduction. ● Cases of Pd-based catalysts for nitrate, chlorate, and perchlorate reduction. ● New functionalities developed by screening and design of catalytic metal sites. ● Facile catalyst preparation approaches for convenient catalyst optimization. ● Rational design and non-decorative effort are essential for future work. In this paper, we discuss the previous advances, current challenges, and future opportunities for the research of catalytic reduction of water pollutants. We present five case studies on the development of palladium-based catalysts for nitrate, chlorate, and perchlorate reduction with hydrogen gas under ambient conditions. We emphasize the realization of new functionalities through the screening and design of catalytic metal sites, including (i) platinum group metal (PGM) nanoparticles, (ii) the secondary metals for improving the reaction rate and product selectivity of nitrate reduction, (iii) oxygen-atom-transfer metal oxides for chlorate and perchlorate reduction, and (iv) ligand-enhanced coordination complexes for substantial activity enhancement. We also highlight the facile catalyst preparation approach that brought significant convenience to catalyst optimization. Based on our own studies, we then discuss directions of the catalyst research effort that are not immediately necessary or desirable, including (1) systematic study on the downstream aspects of under-developed catalysts, (2) random integration with hot concepts without a clear rationale, and (3) excessive and decorative experiments. We further address some general concerns regarding using H2 and PGMs in the catalytic system. Finally, we recommend future catalyst development in both “fundamental” and “applied” aspects. The purpose of this perspective is to remove major misconceptions about reductive catalysis research and bring back significant innovations for both scientific advancements and engineering applications to benefit environmental protection.  相似文献   

16.
● Fundamentals of membrane fouling are comprehensively reviewed. ● Contribution of thermodynamics on revealing membrane fouling mechanism is summarized. ● Quantitative approaches toward thermodynamic fouling mechanisms are deeply analyzed. ● Inspirations of thermodynamics for membrane fouling mitigation are briefly discussed. ● Research prospects on thermodynamics and membrane fouling are forecasted. Membrane technology is widely regarded as one of the most promising technologies for wastewater treatment and reclamation in the 21st century. However, membrane fouling significantly limits its applicability and productivity. In recent decades, research on the membrane fouling has been one of the hottest spots in the field of membrane technology. In particular, recent advances in thermodynamics have substantially widened people’s perspectives on the intrinsic mechanisms of membrane fouling. Formulation of fouling mitigation strategies and fabrication of anti-fouling membranes have both benefited substantially from those studies. In the present review, a summary of the recent results on the thermodynamic mechanisms associated with the critical adhesion and filtration processes during membrane fouling is provided. Firstly, the importance of thermodynamics in membrane fouling is comprehensively assessed. Secondly, the quantitative methods and general factors involved in thermodynamic fouling mechanisms are critically reviewed. Based on the aforementioned information, a brief discussion is presented on the potential applications of thermodynamic fouling mechanisms for membrane fouling control. Finally, prospects for further research on thermodynamic mechanisms underlying membrane fouling are presented. Overall, the present review offers comprehensive and in-depth information on the thermodynamic mechanisms associated with complex fouling behaviors, which will further facilitate research and development in membrane technology.  相似文献   

17.
• A pilot study was conducted for drinking water treatment using loose NF membranes. • The membranes had very high rejection of NOM and medium rejection of Ca2+/Mg2+. • Organic fouling was dominant and contribution of inorganic fouling was substantial. • Both organic and inorganic fouling had spatial non-uniformity on membrane surface. • Applying EDTA at basic conditions was effective in removing membrane fouling. Nanofiltration (NF) using loose membranes has a high application potential for advanced treatment of drinking water by selectively removing contaminants from the water, while membrane fouling remains one of the biggest problems of the process. This paper reported a seven-month pilot study of using a loose NF membrane to treat a sand filtration effluent which had a relatively high turbidity (~0.4 NTU) and high concentrations of organic matter (up to 5 mg/L as TOC), hardness and sulfate. Results showed that the membrane demonstrated a high rejection of TOC (by>90%) and a moderately high rejection of two pesticides (54%–82%) while a moderate rejection of both calcium and magnesium (~45%) and a low rejection of total dissolved solids (~27%). The membrane elements suffered from severe membrane fouling, with the membrane permeance decreased by 70% after 85 days operation. The membrane fouling was dominated by organic fouling, while biological fouling was moderate. Inorganic fouling was mainly caused by deposition of aluminum-bearing substances. Though inorganic foulants were minor contents on membrane, their contribution to overall membrane fouling was substantial. Membrane fouling was not uniform on membrane. While contents of organic and inorganic foulants were the highest at the inlet and outlet region, respectively, the severity of membrane fouling increased from the inlet to the outlet region of membrane element with a difference higher than 30%. While alkaline cleaning was not effective in removing the membrane foulants, the use of ethylenediamine tetraacetate (EDTA) at alkaline conditions could effectively restore the membrane permeance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号