首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
利用垃圾焚烧飞灰掺入普通硅酸盐水泥制备水泥固化体,通过浸出性实验,研究了飞灰掺量(0%、20%、40%与60%)、浸出液pH及水洗预处理对水泥固化体抗压强度及重金属(Zn、Pb、Cu、Cd、Cr、Ni)浸出的影响。结果表明:对于非水洗飞灰水泥固化体,pH为4.2和10.0下浸出84 d时,相同组成固化体抗压强度较为接近,飞灰掺量20%,40%和60%的固化体抗压强度分别为41、15和10 MPa左右;除掺量为40%和60%的固化体浸出液中重金属(pH为4.2时Ni和Pb,pH为10.0时Ni)超出生活饮用水卫生标准(GB 5749-2006)外,掺量为40%和60%的固化体的其余浸出液及掺量20%的固化体浸出液中测定的重金属浓度均符合生活饮用水卫生标准。对于水洗飞灰水泥固化体,pH为4.2和10.0下浸出84 d时,相同组成固化体抗压强度较为接近,飞灰掺量20%、40%和60%的固化体抗压强度分别为37、32和10 MPa左右;除掺量为60%的固化体浸出液(pH为4.2和10.0)中Ni和Pb均超出生活饮用水卫生标准外,掺量为60%的固化体的其余浸出液及飞灰掺量20%和40%的固化体浸出液中测定的重金属浓度均符合生活饮用水卫生标准。飞灰水洗预处理提高了飞灰掺量40%水泥固化体抗压强度,同时降低了重金属浸出性。  相似文献   

2.
用硫铝酸盐水泥对城市垃圾焚烧飞灰(简称飞灰)进行固化实验,研究了飞灰重金属浸出特性,分析了飞灰掺量、浸提剂p H值对重金属浸出特性以及飞灰掺量对不同龄期(3、7、28 d)飞灰固化体抗压强度的影响,并对飞灰及其固化体进行XRD分析。结果表明,在HJ/T 299-2007和HJ/T 300-2007两种不同浸出体系下,飞灰中Cu、Zn、Cd、Pb、Cr和Mn等重金属浸出浓度差别较大,建议应根据评价目标合理选择重金属浸出测量方法。其中,飞灰中Pb的浸出浓度超过《危险废物鉴别标准浸出毒性鉴别》(GB 5085.3-2007)限值的3.35倍,因此被列为危险废物,应妥善处理。除飞灰掺量小于40%时的固化体Cd符合标准,其余飞灰固化体Pb和Cd的浸出浓度仍超过《生活垃圾填埋场污染控制标准》(GB 16889-2008)限值,故达不到卫生填埋的要求。固化体抗压强度随飞灰掺量增大而降低,重金属浸出浓度与之相反。飞灰掺量为40%时,固化体中重金属浸出浓度随浸提剂p H值降低而增大,但p H值大于5时,未测出重金属浸出。XRD结果表明:飞灰中可溶性盐参与水泥水化反应,重金属Cr以CrO_2-4的形式固化于钙矾石中。  相似文献   

3.
惰性材料、化学物质和工业废渣掺入磷石膏,低温制备改性β-半水磷石膏(MHG),并对其煅烧温度、抗压强度、凝结时间及固化铅污染土壤的效果进行研究。结果表明,磷石膏、矿渣、粉煤灰和生石灰按91∶4∶3∶2(质量比)制备的MHG性能最好,抗压强度达到6.47MPa,相对于β-半水磷石膏抗压强度提高了24.18%,凝结时间延长7~23min。MHG固化铅污染土壤,养护3d的铅浸出质量浓度为0.015~0.028mg/L,相对于水泥铅浸出质量浓度降低了43.90%~57.14%。  相似文献   

4.
水泥、粉煤灰及DTCR固化/稳定化重金属污染底泥   总被引:2,自引:0,他引:2  
采用水泥、粉煤灰及有机硫稳定剂DTCR固化/稳定化处理重金属污染的底泥,考察固化体的抗压强度及重金属浸出毒性,确定了底泥固化/稳定化的最佳工艺条件。结果表明:仅用水泥固化/稳定化重金属污染底泥,固化体抗压强度随水泥用量的增加而上升,重金属浸出浓度则下降,当水泥∶干底泥质量比为0.6∶1.0时,固化体7 d抗压强度能达到0.99 MPa的标准值;进一步研究发现,水泥∶粉煤灰∶干底泥质量比为0.54∶0.06∶1.0时,重金属浸出浓度有所上升,但7 d及28 d抗压强度仍能分别达到1.2 MPa和2.8 MPa;加入DTCR后,当水泥∶粉煤灰∶DTCR∶干底泥质量比为0.54∶0.06∶0.012∶1.0时,固化体7 d及28 d抗压强度分别为1.1 MPa和2.1 MPa,醋酸缓冲溶液法浸出的Cd、Pb、Zn和Cu浓度分别为0.102、0.189、0.180和0.032 mg/L。  相似文献   

5.
对垃圾焚烧飞灰(以下简称飞灰)的矿物组成、微观形貌及其重金属浸出浓度进行了测试分析,结果表明,飞灰中Cd与Pb的浸出浓度远高于《生活垃圾填埋场控制标准》(GB 16889—2008)规定的限值,在进行安全填埋之前需固化处理。引入水泥蒸养固化技术,减少水泥掺量,增加粉煤灰掺量来处理飞灰。研究了不同配比下固化体的抗压强度以及不同飞灰掺量对固化体浸出浓度的影响。结果表明,蒸养后的固化体抗压强度基本都能达到安全填埋的要求,其重金属浸出浓度都低于GB 16889—2008规定的限值,可以进行安全填埋。  相似文献   

6.
地质聚合物固化稳定化重金属复合污染土壤   总被引:2,自引:0,他引:2  
以污染土壤部分替代偏高岭土,在碱激发剂的作用下制备地质聚合物稳定化处理Pb、As、Cd复合污染土壤,研究了其稳定化效果及处理后固化体中重金属的赋存形态。结果表明:污染土壤部分替代高岭土降低了固化体抗压强度,从力学性能上看,土壤掺量低于50%时,能满足建筑材料的强度要求(10 MPa),掺量为60%仅能满足固废填埋要求(5 MPa),土壤掺量≥70%均不能满足要求。随着土壤掺量增加,对土壤中重金属的稳定化效果也逐渐降低,当土壤Pb、As和Cd浓度分别为600、80和22 mg·L~(-1)(HJ 350-2007B)时,土壤掺量在20%~50%,固化体中3种元素浸出浓度均低于浸出标准;当土壤掺量达到60%时,Pb的浸出浓度不能满足标准要求,当土壤掺量增加至70%,固化体中Pb、Cd浸出浓度均超标。固定土壤掺量为30%,随着污染土壤中重金属含量的增加,浸出浓度也增加:土壤中3种重金属浓度为HJ 350-2007B时经过30 d的稳定化处理,浸出浓度满足标准要求;而当浓度达到HJ 350-2007B的2倍时,Pb浸出浓度超标;达到HJ 350-2007B的3倍时,3种Pb、As和Cd均超出浸出标准。固化体中Pb、As、Cd的形态研究表明,外源重金属进入土壤后多以活性较高的形态存在,经过固化稳定后活性态占比降低、残渣态占比增加。  相似文献   

7.
为实现城市生活垃圾焚烧飞灰的安全处理,通过机械力化学法活化循环流化床燃煤固硫灰,探讨了球磨样品制备固化体的参数。并采用X射线衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)手段对垃圾焚烧飞灰中重金属的固化机制进行了研究。结果表明,当垃圾焚烧飞灰掺加比为60%,球磨转速为600 r·min~(-1),球磨时间为5 h,养护温度60℃时的固化体28 d和56 d抗压强度分别达到15.6 MPa和17.9 MPa,采用原子吸收光谱仪(AAS)测得固化体中Zn、Pb、Cu、Cd和Cr重金属浸出量均低于GB 5085.3-2007规定限值。XRD和FTIR表征结果表明,在水化过程中,该混合体系生成了水化硅酸钙(C—S—H)、斜方钙沸石和钙矾石(AFt)等水化产物,并且C—S—H凝胶可通过物理包裹的形式固化垃圾焚烧飞灰中重金属;斜方钙沸石和钙矾石以化学吸附的方式使垃圾焚烧飞灰中的重金属离子达到固化/稳定化效果,实现了垃圾焚烧飞灰中重金属的安全处理。  相似文献   

8.
采用有机硫稳定剂(DTCR)与水泥对城市垃圾焚烧飞灰进行稳定/固化处理,研究了飞灰中Cd、Pb、Zn的浸出毒性和固化体的抗压强度,比较了螯合稳定与水泥固化对Cd、Pb、Zn的处理效果、养护时间对固化体抗压强度的影响,并对飞灰的结构形貌进行了分析。结果表明,在稳定固化过程中飞灰中发生了复杂的螯合、水化反应,重金属形态由不稳定态向稳定态转变,螯合稳定对Cd的处理效果最好,水泥固化更适用于Pb、Zn。固化时间大于7 d后,飞灰中的重金属以及固化体的抗压强度已较为稳定。螯合稳定协同水泥固化的处理效果优于单一的稳定或固化方法,飞灰在固化7 d后可同时达到重金属浸出毒性和抗压强度标准,满足安全填埋要求。  相似文献   

9.
采用再生铝飞灰为研究样品,研究了飞灰重金属浸出毒性水平以及飞灰浸出毒性特征,同时探讨了飞灰的处理处置工艺。结果表明:飞灰中Pb、Cd和Zn浸出浓度超标,超标率为100%,属于具有浸出毒性的危险废物,必须对其进行稳定和固化;再生铝飞灰中锌的浸出浓度所占比例最大,铅的浸出浓度次之,两者之和占总量的98%以上,再生铝飞灰中主要有害重金属为Zn和Pb;并结合当前飞灰的处理处置工艺,提出的可能的控制方法为水泥固化和药剂稳定法,为同类研究提供参考。  相似文献   

10.
采用水泥固化法处理垃圾焚烧飞灰,研究了飞灰与水泥质量比、养护时间、添加剂和化学预处理对垃圾焚烧飞灰固化块中重金属Zn、Pb、Cu、Cd、Cr浸出的影响.结果表明,当飞灰与水泥质量比为3:4,养护时间为11d的条件下,以砂浆塑化剂为添加剂,固化块Pb、Cu、Cd和Cr的浸出浓度分别降低了72.4%、70.6%、60.0%...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号