共查询到20条相似文献,搜索用时 15 毫秒
1.
The secondary organic aerosol (SOA) formation mechanism and physicochemical properties can highly be influenced by relative humidity (RH) and NOx concentration. In this study, we performed a laboratory investigation of the SOA formation from toluene/OH photooxidation system in the presence or absence of NOx in dry and wet conditions. The chemical composition of toluene-derived SOA was measured using Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). It was found that the mass concentration of toluene decreased with increasing RH and NOx concentration. However, the change of SOA chemistry composition (f44, O/C) with increased RH was not consistent in the condition with or without NOx. The light absorption and mass absorption coefficient (MAC) of the toluene-derived SOA only increased with RH in the presence of NOx. In contrast, MAC is invariant with RH in the absence of NOx. HR-ToF-AMS results showed that, in the presence of NOx, the increased nitro-aromatic compounds and N/C ratio concurrently caused the increase of SOA light absorption and O/C in wet conditions, respectively. The relative intensity of CHON and CHOxN family to the total nitrogen-containing organic compounds (NOCs) increased with the increasing RH, and be the major components of NOCs in wet condition. This work revealed a synergy effect of NOx and RH on SOA formation from toluene photooxidation. 相似文献
2.
3.
Effect of illumination intensity and light application time on secondary organic aerosol formation from the photooxidation of α-pinene 总被引:2,自引:0,他引:2
LIU Xianyun ZHANG Weijun HUANG Mingqiang WANG Zheny HAO Liqing ZHAO Wenwu 《环境科学学报(英文版)》2009,21(4):447-451
Secondary organic aerosol (SOA) formation from hydroxyl radical (OH.) initiated photooxidation of α-pinene was investigated in a home-made smog chamber. The size distribution of SOA particles was measured using aerodynamic particle sizer spectrometer. The effects of illumination intensity and light application time on SOA formation for α-pinene were evaluated. Experimental results show that the concentration of SOA particles increased significantly with an increasing of illumination intensity, and the light... 相似文献
4.
Secondary organic aerosol(SOA) formation potential for six kinds of short aliphatic ethers has been studied.The size distribution,mass concentration,and yield of SOA formed by ethers photooxidation were determined under different conditions.The results showed that all six ethers can generate SOA via reaction with OH radicals even under no seed and NOxfree condition.The mass concentration for six seedless experiments was less than 10 μg/m3 and the SOA yields were all below 1... 相似文献
5.
Zhuofei Du Min Hu Jianfei Peng Song Guo Rong Zheng Jing Zheng Dongjie Shang Yanhong Qin He Niu Mengren Li Yudong Yang Sihua Lu Yusheng Wu Min Shao Shijin Shuai 《环境科学学报(英文版)》2018,30(4):348-357
Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. 相似文献
6.
Zhenhao Ling Liqing Wu Yonghong Wang Min Shao Xuemei Wang Weiwen Huang 《环境科学学报(英文版)》2022,34(4):259-285
Secondary organic aerosol(SOA) is a very important component of fine particulate matter(PM2.5) in the atmosphere. However, the simulations of SOA, which could help to elucidate the detailed mechanism of SOA formation and quantify the roles of various precursors, remains unsatisfactory, as SOA levels are frequently underestimated. It has been found that the performance of SOA formation models can be significantly improved by incorporating the emission and evolution of semivolatile and ... 相似文献
7.
Size distribution of the secondary organic aerosol particles from the photooxidation of toluene 总被引:6,自引:5,他引:6
HAO Li-qing WANG Zhen-y HUANG Ming-qiang PEI Shi-xin YANG Yong ZHANG Wei-jun 《环境科学学报(英文版)》2005,17(6):912-916
In a smog chamber, the photooxidation of toluene was initiated by hydroxyl radical (OH.) under different experimental conditions. The size distribution of secondary organic aerosol(SOA) particles from the above reaction was measured using aerodynamic particle sizer spectrometer. It was found from our experimental results that the number of SOA particles increased with increasing the concentration of toluene. As the reaction time prolonged, the sum of SOA particles was also increased. After a reaction time of 130 min, the concentration of secondary organic aerosol particles would be kept constant at 2300 particles/cm^3. Increasing illumination power of blacklamps could significantly induce a higher concentration of secondary organic aerosol particle. The density of SOA particles would also be increased with increasing concentration of CH30NO, however, it would be decreased as soon as the concentration of CH30NO was larger than 225.2 ppm. Nitrogen oxide with initial concentration higher than 30. 1 ppm was also found to have little effect on the formation of secondary organic aerosol. 相似文献
8.
来源于机动车尾气的苯能溶于大气水滴、云雾等水相中并发生水相光氧化反应,在水分蒸发后,产物保留在颗粒相中形成二次有机气溶胶(SOA)粒子.本文采用雾化器将羟基启动苯水相光氧化反应溶液雾化产生气溶胶粒子,通过扩散干燥管除去水蒸气后产生SOA粒子,采用气溶胶激光飞行时间质谱仪进行在线检测,利用紫外可见吸收光谱仪、红外光谱仪和液相色谱串联质谱仪离线测量SOA的化学组分.实验结果表明,激光解吸附质谱中存在醛类(m/z=29(CHO~+)、57(CHOCO~+))、羧酸(m/z=44(COO~+))和苯环(m/z=39(C_3H~+_3)、65(C_5H~-_5))特征裂解碎片峰.SOA粒子的红外光谱图中存在苯环C—H和C=C双键,以及C=O双键、C—O、O—H和C—O—C键的伸缩振动吸收峰,电喷雾电离质谱中存在m/z高达915的离子峰.这表明醛类、羧酸、酚类、芳香醚类产物和酚类产物发生聚合形成的高分子量化合物是SOA粒子的主要化学组分.这为研究人为源挥发性有机化合物水相反应形成SOA的机理提供了实验依据. 相似文献
9.
Volatile organic compounds (VOCs) are major precursors for ozone and secondary organic aerosol (SOA), both of which greatly harm human health and significantly affect the Earth''s climate. We simultaneously estimated ozone and SOA formation from anthropogenic VOCs emissions in China by employing photochemical ozone creation potential (POCP) values and SOA yields. We gave special attention to large molecular species and adopted the SOA yield curves from latest smog chamber experiments. The estimation shows that alkylbenzenes are greatest contributors to both ozone and SOA formation (36.0% and 51.6%, respectively), while toluene and xylenes are largest contributing individual VOCs. Industry solvent use, industry process and domestic combustion are three sectors with the largest contributions to both ozone (24.7%, 23.0% and 17.8%, respectively) and SOA (22.9%, 34.6% and 19.6%, respectively) formation. In terms of the formation potential per unit VOCs emission, ozone is sensitive to open biomass burning, transportation, and domestic solvent use, and SOA is sensitive to industry process, domestic solvent use, and domestic combustion. Biomass stoves, paint application in industrial protection and buildings, adhesives application are key individual sources to ozone and SOA formation, whether measured by total contribution or contribution per unit VOCs emission. The results imply that current VOCs control policies should be extended to cover most important industrial sources, and the control measures for biomass stoves should be tightened. Finally, discrepant VOCs control policies should be implemented in different regions based on their ozone/aerosol concentration levels and dominant emission sources for ozone and SOA formation potential. 相似文献
10.
Tianzeng Chen Yongchun Liu Biwu Chu Changgeng Liu Jun Liu Yanli Ge Qingxin M Jinzhu M Hong He 《环境科学学报(英文版)》2019,31(5):256-263
Current atmospheric quality models usually underestimate the level of ambient secondary organic aerosol(SOA), one of the possible reasons is that the precursors at different concentrations may undergo different oxidation processes and further affect SOA formation. Therefore, there is a need to perform more chamber studies to disclose the influence. In this work, SOA formation over a wide range of initial precursor concentrations(tens of ppb to hundreds of ppb levels) was investigated in a 30 m3 indoor smog chamber,and mainly through the analysis of multiple generations of VOCs detected from HR-To FPTRMS to expound the difference in the oxidation process between low and high precursor concentrations. Compared to high initial concentrations, gas-phase intermediates formed at low concentrations had a higher intensity by about one order of magnitude, and the lowvolatility compounds also had a higher formation potential due to the competition between semi-volatile intermediates and precursors with oxidants. In addition, the formed SOA was more oxidized with higher f44 value(0.14 ± 0.02) and more relevant to real atmosphere than that formed at high concentrations. This work should help to deeply understand SOA formation and improve the performance of air quality models for SOA simulation. 相似文献
11.
The formation and aging mechanism of secondary organic aerosol (SOA) and its influencing factors have attracted increasing attention in recent years because of their effects on climate change, atmospheric quality and human health. However, there are still large errors between air quality model simulation results and field observations. The currently undetected components during the formation and aging of SOA due to the limitation of current monitoring techniques and the interactions among multiple SOA formation influencing factors might be the main reasons for the differences. In this paper, we present a detailed review of the complex dynamic physical and chemical processes and the corresponding influencing factors involved in SOA formation and aging. And all these results were mainly based the studies of photochemical smog chamber simulation. Although the properties of precursor volatile organic compounds (VOCs), oxidants (such as OH radicals), and atmospheric environmental factors (such as NOx, SO2, NH3, light intensity, temperature, humidity and seed aerosols) jointly influence the products and yield of SOA, the nucleation and vapor pressure of these products were found to be the most fundamental aspects when interpreting the dynamics of the SOA formation and aging process. The development of techniques for measuring intermediate species in SOA generation processes and the study of SOA generation and aging mechanism in complex systems should be important topics of future SOA research. 相似文献
12.
通过烟雾箱实验,研究了仲丁醇对苯乙烯臭氧化反应生成二次有机气溶胶(SOA)的影响.结果发现,在烟雾箱实验中,过量仲丁醇的加入导致生成SOA的产率明显下降.同时,结合MCM气相机理和气-粒分配理论,将Criegee中间体与醛类的双分子反应添加到箱式模型中模拟烟雾箱中SOA的生成过程.模拟结果表明,在没有仲丁醇存在的情况下,次级臭氧化物在SOA组分中占1/2左右的比例.仲丁醇的加入消耗了大量的·OH,同时使得[HO_2]/[RO_2]比值升高,影响自由基相关的反应机制,使得SOA产率下降.另外,研究发现,Criegee中间体与醛类反应的速率常数也是影响SOA生成模拟的一个重要参数,需要进一步开展相关的动力学实验和理论研究. 相似文献
13.
LIU Xianyun ZHANG Weijun WANG Zheny ZHAO Weixiong TAO Ling YANG Xibin 《环境科学学报(英文版)》2009,21(11):1525-1531
Photooxidation of isoprene leads to the formation of secondary organic aerosol (SOA). In this study, the chemical composition of
SOA formed from OH-initiated photooxidation of isoprene has been investigated with gas chromatography/mass spectrometry (GC/MS)
and a home-made aerosol time-of-flight mass spectrometer. Sampling particles generated in a home-made smog chamber. The size
distribution of SOA particles was detected by a TSI 3321 aerodynamic particle size spectrometer in real time. Results showed that
SOA created by isoprene photooxidation was predominantly in the form of fine particles, which have diameters less than 2.5 m. The
obtained mass spectra of individual particles show that products of the OH-initiated oxidation of isoprene contain methyl vinyl ketone,
methacrolein, formaldehyde, and some other hydroxycarbonyls. The possible reaction mechanisms leading to these products were also
discussed. 相似文献
14.
Jiaxin Wang Xiaohui Ma Yuemeng Ji Yongpeng Ji Yanpeng Gao Yuqi Xiao Guiying Li Taicheng An 《环境科学学报(英文版)》2023,35(4):103-112
Organosulfate (OSA) nanoparticles,as secondary organic aerosol (SOA) compositions,are ubiquitous in urban and rural environments.Hence,we systemically investigated the mechanisms and kinetics of aqueous-phase reactions of 1-butanol/1-decanol (BOL/DOL) and their roles in the formation of OSA nanoparticles by using quantum chemical and kinetic calculations.The mechanism results show that the aqueous-phase reactions of BOL/DOL start from initial protonation at alcoholic OH-groups to form carbenium ... 相似文献
15.
Hsi-Hsien Yang Sunil Kumar Gupt Narayan Babu Dhital Lin-Chi Wang Suresh Pandian Elumalai 《环境科学学报(英文版)》2020,32(6):245-255
Volatile organic compounds(VOCs) are the important precursors of the tropospheric ozone(O_3) and secondary organic aerosols(SOA),both of which are known to harm human health and disrupt the earth's climate system.In this study,VOC emission factors,O_3 and SOA formation potentials were estimated for two types of industrial boilers:coal-fired boilers(n=3) and oil-fired boilers(n=3).Results showed that EVOCs concentrations were more than nine times higher for oil-fire d boilers compared to those for coal-fired boilers.Emission factors of ΣVOCs were found to be higher for oil-fired boilers(9.26-32.83 mg-VOC/kg) than for coal-fired boilers(1.57-4.13 mg-VOC/kg).Alkanes and aromatics were obtained as the most abundant groups in coal-fired boilers,while oxygenated organics and aromatics were the most contributing groups in oil-fired boilers.Benzene,n-hexane and o-ethyl toluene were the abundant VOC species in coal-fired boiler emissions,whereas toluene was the most abundant VOC species emitted from oil-fired boilers.O_3 and SOA formation potentials were found 12 and 18 times,respectively,higher for oil-fired than for coal-fired boilers.Total OFP ranged from 3.99 to 11.39 mg-O_3/kg for coal-fired boilers.For oil-fired boilers,total OFP ranged from 36.16 to 131.93 mg-O_3/kg.Moreover,total secondary organic aerosol potential(SOAP) ranged from 65.4 to 122.5 mg-SOA/kg and 779.9 to 2252.5 mg-SOA/kg for the coal-fired and oil-fired boilers,respectively. 相似文献
16.
酸性硫酸铵是中国城市大气中常见的亚微米气溶胶颗粒,它在二次有机气溶胶(SOA)的形成中起着至关重要的作用.本文利用自制的烟雾腔系统开展了酸性硫酸铵种子气溶胶对甲苯SOA形成和化学组分的影响研究,采用PM2.5粒子检测仪、高效液相色谱质谱仪和紫外-可见分光光度计测量反应产生的SOA粒子的浓度和组分.实验结果表明,酸性硫酸铵种子气溶胶能够显著促进甲苯SOA的形成.相比于没有种子气溶胶存在时,甲苯SOA中检测到的羧酸组分,甲苯光氧化产生的二醛化合物在酸性硫酸铵颗粒表面上发生非均相反应产生的咪唑类化合物是酸性硫酸铵种子气溶胶存在时甲苯SOA的主要组分.气相二醛化合物能在高浓度酸性硫酸铵种子气溶胶表面快速发生非均相酸催化反应产生咪唑类产物.这为研究高浓度酸性无机细粒子背景下,大气咪唑类含氮有机物棕色碳的形成机制研究提供了实验依据. 相似文献
17.
The atmospheric chemistry in complex air pollution remains poorly understood. In order to probe how environmental conditions can impact the secondary organic aerosol (SOA) formation from biomass burning emissions, we investigated the photooxidation of 2,5-dimethylfuran (DMF) under different environmental conditions in a smog chamber. It was found that SO2 could promote the formation of SOA and increase the amounts of inorganic salts produced during the photooxidation. The formation rate of SOA and the corresponding SOA mass concentration increased gradually with the increasing DMF/OH ratio. The addition of (NH4)2SO4 seed aerosol accelerated the SOA formation rate and significantly shortened the time for the reaction to reach equilibrium. Additionally, a relatively high illumination intensity promoted the formation of OH radicals and, correspondingly, enhanced the photooxidation of DMF. However, the enhancement of light intensity accelerated the aging of SOA, which led to a gradual decrease of the SOA mass concentration. This work shows that by having varying influence on atmospheric chemical reactions, the same environmental factor can affect SOA formation in different ways. The present study is helpful for us to better understand atmospheric complex pollution. 相似文献
18.
A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility < l0 km and RH (relative humidity) < 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA (sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) concentrations. The average values with standard deviation of SO42 −, NO3−, NH4+ and SOA were 49.8 (± 31.6), 31.4 (± 22.3), 25.8 (± 16.6) and 8.9 (± 4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO42 −, NO3−, NH4+, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about 27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR (sulfur oxidation ratio) and NOR (nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO42 − and NO2 to NO3−, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing. 相似文献
19.
Tingting Han Xingang Liu Yuanhang Zhang Yu Qu Limin Zeng Min Hu Tong Zhu 《环境科学学报(英文版)》2015,27(5):51-60
A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility 10 km and RH(relative humidity) 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA(sulfate, nitrate, and ammonium) and SOA(secondary organic aerosol) concentrations. The average values with standard deviation of SO2-+4, NO-3, NH4 and SOA were 49.8(± 31.6), 31.4(±22.3), 25.8(±16.6) and 8.9(±4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO2-4,NO-3, NH+4, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR(sulfur oxidation ratio) and NOR(nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO2-4and NO2 to NO-3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing. 相似文献
20.
苯系物光氧化反应形成的二次有机气溶胶(SOA)是大气细粒子的重要组成部分.SOA羧酸和二元醛组分能与氨反应形成有机酸铵和咪唑类含氮有机物,它们能够吸收205 nm和270 nm的紫外辐射,是棕色碳的主要组分.氯化钙等无机种子气溶胶具有较大的比表面积,可为气相羰基化合物和氨提供凝结与反应载体,从而影响含氮有机物的形成.基于此,本文利用烟雾腔研究氯化钙种子气溶胶存在时甲苯SOA与氨的反应,采用紫外-可见分光光度计测量产物溶液在205 nm和270 nm处的吸光度,并定性研究不同浓度、湿度和酸度的氯化钙种子气溶胶对含氮有机物形成的影响.结果表明:氯化钙种子气溶胶能够促进甲苯SOA含氮有机物的形成;含氮有机物的生成浓度随着氯化钙种子气溶胶浓度和pH值的增加而逐渐增大.但当氯化钙种子气溶胶为碱性时,OH~-会与凝结的有机酸发生酸碱中和反应并抑制二元醛化合物水合形成四醇产物,从而不利于含氮有机物的生成;水分子的增加占据了氯化钙种子气溶胶表面的吸附活性位点,氨被吸附和凝结的量减少,从而导致含氮有机物的生成浓度随着相对湿度的增大而降低.本研究可为人为源SOA棕色碳的形成机制和化学组成研究提供实验依据. 相似文献