共查询到20条相似文献,搜索用时 15 毫秒
1.
鸟粪石天然沸石复合材料对水中铅离子的去除 总被引:1,自引:1,他引:1
将一种含鸟粪石的氮磷回收产物(NZ-MAP)应用于水中重金属离子铅的去除.通过XRD、FTIR、SEM/EDS分析手段对NZ-MAP进行表征,并探究投加量、溶液初始pH、反应时间对去除过程的影响.结果表明NZ-MAP材料主要成分为负载有鸟粪石的天然沸石;当投加量为0. 4 g·L~(-1)时,最大吸附量为749. 74 mg·g~(-1),同时NZ-MAP对溶液中Pb~(2+)的吸附量随pH的增大呈先增加后趋于平衡的趋势,其去除机理主要为Pb_(10)(PO_4)_6(OH)_2沉淀作用,且当pH为5. 0时效果最佳.该材料对于水中铅离子的去除过程更加符合准二级动力学模型.为深入探讨共存重金属离子对NZ-MAP去除水中铅离子的影响,发现共存Ni~(2+)和Cu~(2+)对NZ-MAP吸附Pb~(2+)的影响较小,共存Zn~(2+)和Al~(3+)明显抑制了NZ-MAP对Pb~(2+)的吸附.研究显示,NZ-MAP材料可高效去除水中铅离子,可为水体中铅离子的去除提供有效的方法 相似文献
2.
鸟粪石-沸石复合材料对水中镉的吸附性能研究 总被引:2,自引:0,他引:2
研究以氧化镁负载沸石回收污水中氮磷得到的鸟粪石-沸石复合材料(STR-NZ)为吸附剂,用于对水体中重金属镉的吸附去除.实验采用SEM-EDS、XRD和FTIR等手段对STR-NZ材料进行表征,并考察了投加量、初始pH和反应时间等对STR-NZ材料去除水中Cd~(2+)的影响.结果表明:氧化镁负载沸石材料主要以鸟粪石沉淀的方式实现对水中磷酸盐和氨氮的回收;STR-NZ对水溶液中Cd~(2+)的吸附量随pH的增大呈先增加后趋于平衡的趋势,当Cd~(2+)的初始浓度为50 mg·L~(-1)时,STR-NZ的最佳投加量为0.2 g·L~(-1),Cd~(2+)最大吸附量为249.35 mg·g~(-1), STR-NZ对Cd~(2+)的吸附动力学符合准二级动力学模型,对Cd~(2+)的等温吸附符合Langmuir等温吸附模型,STR-NZ主要通过Cd_5(PO_4)_3(OH)沉淀的方式实现对水中Cd~(2+)的去除. 相似文献
3.
4.
5.
氢氧化镧-天然沸石复合材料对水中低浓度磷酸盐的吸附作用 总被引:2,自引:4,他引:2
采用液相沉淀法将氢氧化镧和天然沸石进行复合,制备得到镧-沸石复合材料,并通过批量吸附实验考察了该复合材料对水中磷酸盐的吸附作用,特别是考察了该复合材料去除水中低浓度磷酸盐的影响因素.结果表明,当制备复合材料时沉淀pH值为5~7或13时,复合材料对水中磷酸盐的吸附能力较差;当沉淀pH值控制为9~12,复合材料对水中磷酸盐的吸附能力较好,且当沉淀pH值由9增加到11时,复合材料的吸磷能力明显增加,继续增加pH值由11~12时,复合材料的吸磷能力基本不变.沉淀pH值为11时制备的镧-沸石复合材料对水中磷酸盐的吸附平衡数据可以较好地采用Langmuir模型加以描述,根据Langmuir模型预测的最大磷酸盐吸附量为44 mg·g~(-1)(磷酸盐溶液pH 7和反应温度30℃);该复合材料对水中低浓度磷酸盐的吸附动力学可以较好地采用准二级动力学模型加以描述.当磷酸盐溶液pH值由3增加到8时,沉淀pH值为11条件下制备得到的镧-沸石复合材料对低浓度磷酸盐的吸附能力增加,继续增加磷酸盐溶液pH值时,该复合材料对磷酸盐的吸附能力下降;与磷酸盐溶液共存的氯离子和硫酸根离子不会抑制该复合材料对低浓度磷酸盐的吸附,而碳酸氢根离子则会略微抑制该复合材料对磷酸盐的吸附;与磷酸盐溶液共存的腐殖酸会抑制该复合材料对水中低浓度磷酸盐的吸附.当磷酸盐溶液pH值为7时,沉淀pH值为11时镧-沸石复合材料吸附磷酸盐的机制主要为配位体交换作用.因此,沉淀pH值为11时制备得到的镧-沸石复合材料适合作为吸附剂去除水和废水中低浓度磷酸盐. 相似文献
6.
天然沸石去除氨氮研究 总被引:24,自引:0,他引:24
研究了生物膜、悬浮物对天然沸石去除氨氮的影响及其沸石去除氨氮的主要途径。结果表明,沸石去除氨氮主要是离子交换作用,吸附很小,可忽略不计;由于生物膜对氨氮的同化作用,使得有生物膜的沸石对氨氮的交换容量高于无生物膜,其等温交换曲线换符合Freundlich吸附等温式:y/m=KC^l/n;沸石的吸附容量随着悬浮物浓度增高而降低,2者呈负指数关系;悬浮物对沸石离子交换的影响主要在孔扩散控制阶段,在膜扩散控制阶段影响较小;如果停留时间较短(少于3h),悬浮物对沸石离子交换的影响不大。 相似文献
7.
考察了市售ZSM-5沸石分子筛的碱改性及其吸附去除水中重金属离子Cu2+的效果。研究结果表明,碱改性可有效提高材料吸附容量,经0.40 mol/L氢氧化钠碱改性效果最好。以碱改性分子筛为研究对象,研究其吸附动力学及吸附等温过程,结果表明:吸附过程符合假二阶动力学模型;吸附等温线符合Langmuir等温模型,极限吸附容量达40.49 mg/g。考察投加量、干扰离子等影响因素对碱改性分子筛吸附去除Cu2+离子的影响,对于初始浓度50 mg/L的Cu2+离子,改性材料投加量为0.4~2.4 g/L时,吸附去除率随投加量的增大而增大;当投加量大于1.6 g/L时,对铜离子去除率均在97%以上。当干扰离子Na+、K+、Mg2+、Pb2+与Cu2+离子共存时,Pb2+的干扰影响最大,去除率由不加干扰离子时的98.3%下降至56.5%。此外,采用BET和XRD手段对改性前后的材料进行了表征,并对改性机理进行了探讨。 相似文献
8.
类水滑石复合材料吸附去除水中硫酸根离子 总被引:4,自引:3,他引:4
用共沉淀法制备的类水滑石复合材料作为吸附剂去除水中的硫酸根离子.利用XRD、FT-IR、SEM和EDS元素分析对类水滑石复合材料的结构和组成进行了分析.研究了时间、p H值和共存离子对吸附量的影响.结果表明,类水滑石复合材料是锌铝硝酸根类水滑石和锌铝苯丙氨酸类水滑石的复合材料;类水滑石复合材料对硫酸根离子具有良好的吸附性能,最大吸附量可达到52.75 mg·g~(-1);准二级动力学模型对数据的拟合效果最好,说明吸附速率是由化学吸附控制的;吸附过程更符合Freundlich吸附等温模型,说明类水滑石复合材料对硫酸根离子的吸附是多层吸附;热力学参数表明在常温下吸附过程是自发的吸热过程;类水滑石复合材料吸附硫酸根离子主要是通过离子交换、静电引力作用以及物理吸附的途径来实现的.实验结果表明,该类水滑石复合材料是一种潜在的去除水中硫酸根离子的吸附剂. 相似文献
9.
10.
11.
天然沸石及改性沸石去除低浓度氨氮的研究 总被引:11,自引:4,他引:11
研究了天然斜发沸石在不同的酸、碱和盐改性条件下吸附去除氨氮(NH4+-N)的效果.结果表明:沸石吸附NH4+-N动力学曲线符合“快速吸附、缓慢平衡"的特点,且初始ρ(NH4+-N)越高,吸附速率越快;天然沸石及其改性沸石吸附NH4+-N为单分子层吸附过程,其吸附热力学曲线很好地符合Langmuir曲线. 沸石吸附NH4+-N是吸热反应,适当提高温度能够促进NH4+-N的吸附. 盐改性方法对沸石吸附NH4+-N的效果最好,增加了沸石的比表面积和总孔容,同时有利于沸石的再生. 相似文献
12.
采用天然沸石去除污水中的氨氮 总被引:2,自引:0,他引:2
抚顺石化分公司石油二厂在研究外排污水深度处理过程中,选用天然沸石去除污水中氨氮取得明显效果。经深度处理的污水回用于循环水场用于补水,杜绝了循环水场“软泥”的产生,为污水深度处理及回用总结了一条成功经验。 相似文献
13.
14.
利用液相化学沉淀法制备纳米零价铁/活性炭(nZVI/AC)复合材料,通过XRD、XPS、SEM、BET等表征手段对复合材料的结构、形貌、理化特征等进行分析,进一步考察了反应体系、nZVI负载量、初始pH、投加量等对除锑效果的影响,并对其去除机制进行了探讨.结果表明,液相化学沉淀法可成功制备nZVI/AC复合材料;在N_2氛围下,15%nZVI/AC投加量为0.2 g·L~(-1),初始pH为7.5(原水pH),反应2 h后,Sb(Ⅴ)的去除率达到76.2%,出水浓度仅为23.8μg·L~(-1);去除机制研究结果表明,Fe~(2+)在该体系去除Sb(Ⅴ)中起着主要的作用,是反应过程中的主要活性物质,结合反应前后nZVI/AC表面Sb元素分析,去除过程主要依靠Fe(0)和Fe~(2+)的还原作用,将Sb(Ⅴ)还原成Sb(Ⅲ),并通过吸附作用去除. 相似文献
15.
2种孔径沸石分子筛对水中土霉素的去除研究 总被引:1,自引:3,他引:1
选择2种不同孔径的亲水性沸石分子筛5A和13X作为吸附材料,对水中的土霉素(OTC)进行吸附和脱附实验,重点考察pH、温度对吸附的影响,进行吸附动力学和热力学的计算,分析亲水性沸石分子筛的吸附机制.结果表明,2种分子筛对OTC均有较大的吸附量,吸附过程可用单层吸附模型拟合,在温度为298K、pH=7.0条件下5A和13X的饱和吸附量分别为667mg/g和1429mg/g;同一温度下13X的吸附量明显大于5A;二级动力学方程能较好地描述2种分子筛对OTC的吸附动力学,在解吸时,5A和13X分别得到91%和95%的OTC脱附率;溶液pH值对吸附影响较大,中性条件下分子筛对OTC的吸附量达到最大;热力学计算显示2种分子筛对OTC的吸附均属于自发的吸热反应,综合表观为化学氢键力占主导作用. 相似文献
16.
18.
19.
采取鸟粪石热解回收,再循环利用的方法去除不同来源渗滤液中的氨氮,以降低投药成本。得到的最佳工艺条件为p H=9.5~10,药品投加量为氨氮浓度1.1倍,反应时间20 min,热解温度为100℃,热解时间4 h以上。热解鸟粪石法去除垃圾渗滤液氨氮的效果根据渗滤液本身的性质会产生较大的变化。老龄渗滤液中鸟粪石循环使用20次以后,单位质量的氨氮的去除成本降低至11.63元/kg以下;但在相同工艺条件下处理新鲜渗滤液,鸟粪石循环使用20次以后,单位质量氨氮的去除成本依然维持在35.23元/kg以上。 相似文献