首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
为研究聊城市冬季大气PM_(2.5)中正构烷烃和糖类化合物的分子组成、浓度水平及来源,于2017年1~2月在聊城大学进行PM_(2.5)样品采集,对19种(C18~C36)正构烷烃和10种糖类化合物进行分析,并采用主成分分析法(PCA)解析其来源.结果表明,聊城市冬季PM_(2.5)中总正构烷烃的质量浓度为(456. 9±252. 5) ng·m~(-3),其中,灰霾期的质量浓度最高,约为清洁天的2倍,烟火Ⅰ期与Ⅱ期分别为清洁天的0. 9倍和1. 2倍.采样期间碳优势指数(CPI)值为1. 2±0. 1,植物蜡排放的正构烷烃对总正构烷烃的贡献率(%Wax Cn)为3. 1%~36. 0%,表明化石燃料燃烧是聊城市大气中正构烷烃的主要来源.聊城市冬季PM_(2.5)中糖类化合物的总质量浓度为(415. 5±213. 8) ng·m~(-3),其中左旋葡聚糖的浓度最高,其次是半乳聚糖和甘露聚糖,三者共占总糖的91. 6%,表明生物质燃烧源对聊城市大气气溶胶具有重要贡献.主成分分析(PCA)结果表明,聊城市冬季大气气溶胶中正构烷烃和糖类化合物主要来自化石燃料的燃烧和生物质燃烧.  相似文献   

2.
2013年6月在北京及华北平原大城市空气污染联合观测期间,使用大流量PM2.5采样仪分昼、夜采集北京市典型城区环境空气中PM2.5样品,利用GC-MS技术对PM2.5中正构烷烃的污染水平、分布特征与来源进行分析,并且结合后向轨迹分析了远距离传输的影响.结果表明:观测期间ρ(PM2.5)为29.73~275.30μgm3,PM2.5中ρ(总正构烷烃)为50.33~143.49 ngm3.PM2.5中正构烷烃质量浓度随碳数分布呈单峰-后峰型和双峰-后高型2种;Cmax(主峰碳数)为C29或C31;CPI(碳优势指数)为1.34~6.66;LMWHMW〔ρ(C14~C24正构烷烃)ρ(C25~C36正构烷烃)〕为0.10~0.31.观测期间PM2.5中正构烷烃主要来自高等植物蜡,并且主要来自温带植物;其次来自化石燃料和生物质的不完全燃烧.观测期间来自北京市南向气团轨迹出现概率最高,影响最为突出,其次为来自东南沿海方向和内蒙古中西部方向的气团轨迹.  相似文献   

3.
为了了解宁波市大气中PM2.5污染特征及来源,于2012年冬季在宁波5个环境受体点采集PM2.5样品,分析它们的质量浓度及多种无机元素、水溶性离子、金属元素和碳等组分的含量,并使用PMF模型对宁波市PM2.5来源进行了解析。结果表明:宁波冬季PM2.5浓度较高,5个点位PM2.5中主要化学组分均为有机物、SO42-、NO3-、NH4+和元素碳,约占PM2.5总质量浓度78.2%~92.4%。对宁波市PM2.5有重要贡献的源类分别为钢铁冶炼源、混合扬尘源、生物质燃烧源、二次硝酸盐、高氯源、机动车排放源、重油燃烧源和二次硫酸盐,其分担率分别为5.6%、3.3%、3.2%、28.8%、6.8%、22.2%、0.7%和29.4%。  相似文献   

4.
2017年1月1~20日在成都地区分昼夜对PM2.5进行连续膜样品采集,并在实验室测定了其主要化学组分(水溶性离子和碳质组分)的质量浓度。观测期间,PM2.5的平均质量浓度为(127.1±59.9)μg·m-3;总水溶性离子的质量浓度为(56.5±25.7)μg·m-3,其中SO42-、NO3-和NH4+是最主要的离子,质量浓度分别为(13.6±5.5)、(21.4±12.0)和(13.3±5.7)μg·m-3,一共占到了水溶性离子的85.6%;有机碳(OC)和元素碳(EC)的平均质量浓度分别为34.0μg·m-3和6.1μg·m-3,分别占PM2.5质量浓度的26.8%和4.8%。昼夜污染对比显示,PM2.5白天和夜晚质量浓度分别为(120.4±56.4)μg·m-3和(133.8±64.0)μg·m-3,夜间污染更为严重。SO42-、NO3-和NH4+白天浓度高于夜间,这与白天光照促进了二次离子的形成有关;而Cl-、K+、OC和EC浓度夜间明显升高,可能是受夜间煤和生物质燃烧排放增加的影响。通过对近年来成都冬季PM2.5化学组分的研究进行文献总结和比较后发现,SO42-浓度显著降低,从2010年的50.6μg·m-3降低到2017年的13.6μg·m-3;而NO3-浓度变化不大,维持在20μg·m-3左右。PM2.5中离子酸碱平衡分析表明,成都冬季PM2.5由于NH4+的相对过盛而呈现出碱性,与以往呈偏酸性结果存在差异。对成都冬季NO3-/SO42-的比值进行计算,NO3-/SO42-平均值为1.57,表明移动源对PM2.5污染影响更大。OC与EC的相关性表明,白天和夜间OC与EC的相关系数分别为0.82和0.90(P0.01),OC与EC来源具有一致性。SOC估算结果显示,白天和夜间SOC浓度分别为8.5μg·m-3和11.9μg·m-3,占到OC的28.1%和31.8%。K+/EC平均值为0.31,并且K+与OC之间相关系数为0.87(P0.01),说明生物质燃烧对成都冬季碳质气溶胶有一定影响。主成份分析表明,成都冬季PM2.5主要来源于燃烧源(燃煤、生物质燃烧等)、二次无机污染源以及土壤和扬尘源,其贡献率分别为32.8%、34.5%和21.5%。  相似文献   

5.

为研究青岛市冬季大气PM2.5中正构烷烃的浓度水平、分子组成以及来源,于2020年1月10—23日在青岛市崂山区采集城市地区大气PM2.5样品,通过气相色谱-质谱(GC-MS)进行定量分析得到26种正构烷烃,并对正构烷烃的污染特征及来源进行详细分析。结果表明:正构烷烃浓度为59.2~429.2 ng/m3,平均浓度为(230.9±111.7) ng/m3,其中正二十四烷烃是浓度最高的单体物种,浓度为49.63 ng/m3。依据GB 3095—2012《环境空气质量标准》PM2.5二级浓度限值,采样期间分别有8天污染天和6天清洁天,污染天和清洁天正构烷烃的浓度分别为(283.7±93.6)和(160.5±82.1) ng/m3。污染天和清洁天正构烷烃碳数分布相似,主峰碳为C22,次峰碳为C24。污染天和清洁天正构烷烃的碳优势指数(CPI、CPI1和CPI2)分别为0.91、0.81、1.19和0.98、0.84、1.38,植物蜡贡献率分别为6.67%和19.31%,表明人为排放源是青岛市冬季正构烷烃的主要来源。主成分分析结果表明,青岛市冬季正构烷烃主要来自人为排放源(煤炭燃烧、车辆尾气排放),植物排放源的贡献较小。潜在源分析结果表明,正构烷烃主要来自西北方向的长距离传输,低碳数正构烷烃和高碳数正构烷烃的潜在源分布基本一致。

  相似文献   

6.
于2016年4月、7月、10月和2017年1月利用2台中流量分别在徐州市不同功能区,即生活区、工业区和旅游区采样大气中的细颗粒物(PM_(2.5))样品,测定PM_(2.5)质量浓度及其化学组分(含碳组分、水溶性离子和无机元素),结合化学质量平衡模型(CMB),对PM_(2.5)进行来源解析。研究结果表明:徐州市PM_(2.5)污染的年平均浓度维持在65μg/m~3左右,超过国家环境空气质量标准(GB3095-2012)二级标准(35μg/m3)的0.95倍。冬季全市的PM_(2.5)平均浓度最高,为103.6μg/m~3。根据CMB模型结果,全年PM_(2.5)来源解析,煤烟尘的分担率最高,达23.4%;其次是硫酸盐,达20.5%;硝酸盐的分担率占第三位,为18%,机动车尾气尘和城市扬尘分别为12.3%和11.4%,其他各源类的分担率均小于5%。  相似文献   

7.
为研究南昌经开区冬季PM2.5中正构烷烃的污染特征及来源,文章对2020年12月1日-2021年2月28日采集的PM2.5样品进行了正构烷烃浓度分析。结果表明:南昌经开区冬季PM2.5样品中正构烷烃碳数范围为C20~C33,浓度为71.66~1 295.30 ng/m3,平均为(327.51±186.07) ng/m3。气象参数和气态污染物与正构烷烃之间的相关性表明,正构烷烃浓度受到了人为排放源和气象条件的共同影响。利用诊断参数和PMF模型对正构烷烃来源进行估算,结果显示冬季人为源(化石燃料和生物质燃烧)对南昌经开区大气中正构烷烃的贡献达到66%~77%。南昌经开区冬季出现的8次污染事件,主要受到了生物质燃烧源和化石燃料燃烧源输入的控制,整个冬季污染事件期间,这2种人为源的贡献比例达到68.05%,其中生物质燃料燃烧源占比31.79%,化石燃烧占比36.26%。气象条件也对污染事件中的正构烷烃累积起到了作用,随着温度的升高,更多的挥发性有机物被分配到颗粒物中,会促进正构烷烃浓度...  相似文献   

8.
采集了镇江环境监测站1月份的PM2.5样品,用SPAMS 0515对PM2.5来源进行解析,结果显示,对镇江市区冬季环境空气有明显贡献的颗粒物来源是汽车尾气、燃煤、工业排放和扬尘,4者的贡献率分别为汽车尾气占22.5%、燃煤占16.3%、工业源占13.6%、扬尘占11.8%。镇江市区冬季PM2.5颗粒中,汽车尾气、燃煤分布在小粒径段,扬尘分布在大粒径段。日间汽车尾气和扬尘对PM2.5增高的影响增大,早高峰、晚高峰汽车尾气贡献增长。PM2.5中含的Mn、Fe、Cr、Zn、Pb 5种金属元素颗粒中含Pb颗粒数量最大。  相似文献   

9.
本文为探究鞍山市冬季大气细颗粒(PM_(2.5))中元素的污染特征和来源,于2016年1月在鞍山市6个监测点位采集PM_(2.5)样品,对PM_(2.5)载带的元素进行了浓度特征和富集因子分析,并通过因子分析确定了鞍山市PM_(2.5)中污染元素的主要来源。结果表明,K、Fe、Al、Ca、Na、Mg、Zn、Pb元素浓度含量之和占所有检测的14种元素浓度的97.13%;Cd、Zn、Pb、As、Cu五种元素属于极强富集,Ni属于强烈富集,Cr、Ca、V处于显著富集水平,Mg、K、Na、Fe呈现中度富集。因子分析结果表明,鞍山市冬季大气细颗粒物中污染元素主要来源于钢铁冶炼、机动车尾气、燃煤和建筑扬尘的复合型污染源。  相似文献   

10.
为探讨包头城区大气PM_(2.5)污染特征及主要来源,在包头城区设立4个采样点,于2015年12月-2016年9月采集大气PM_(2.5)样品,共获得160个有效样品,分析了PM_(2.5)及其无机元素、水溶性离子、元素碳(EC)和有机碳(OC)的质量浓度和污染特征。同时采集了包头城区土壤风沙尘、建筑施工尘、道路扬尘、煤炭燃烧尘、装备制造尘和金属冶炼尘等6类污染源,建立了包头市大气PM_(2.5)排放源成分谱。应用非负主成分回归化学质量平衡(NCPCRCMB)模型分析了PM_(2.5)来源。结果表明:观测期间包头市PM_(2.5)的年均浓度为80.58μg/m3,是中国《环境空气质量标准》(GB 3095-2012)年均PM_(2.5)二级标准限值的2.3倍;大气PM_(2.5)的季节变化特征为春、夏、秋三季低冬季高,且冬季显著高于其他三季;大气PM_(2.5)主要来源于二次离子和道路扬尘(贡献率分别为34.37%和15.98%),其他污染源贡献率相对较小。  相似文献   

11.
于2014年4月、8月、10月和12月在合肥市城区采集了大气PM_(10)和PM_(2.5)样品,对PM_(10)和PM_(2.5)的质量浓度及其化学组分(无机元素、含碳组分和水溶性离子)进行了测定.结果显示:合肥城区的PM_(10)和PM_(2.5)的平均质量浓度高达113,83μg/m3,分别超出国家环境空气质量标准年均PM_(10)和PM_(2.5)限值的1.61和2.37倍.不同粒径的颗粒物中主要化学组分含量的高低顺序基本一致,水溶性离子的含量最高,其次为碳组分,无机元素.利用正交矩阵因子分析(PMF)对合肥城区PM_(10)和PM_(2.5)的本地来源进行解析,结果表明:PM_(10)中二次源、燃煤、机动车尾气尘及地壳尘的贡献百分比分别为32.5%、25.9%、15.7%和25.5%;PM_(2.5)中二次源、燃煤、机动车尾气尘及地壳尘的贡献百分比分别为38.8%、25.9%、9.9%和21.7%.利用激光雷达评估合肥市环境中颗粒物PM_(10)的区域传输,四个季节常规贡献率分别为13.4%、12.9%、13.5%和16.4%.  相似文献   

12.
上海市冬季PM_(2.5)无机元素污染特征及来源分析   总被引:3,自引:2,他引:3  
为了解高污染季节上海市细颗粒物PM2.5及其无机元素的污染特征和来源,于2013年1月4日至2月1日在上海3个点位采集PM2.5样品,并采用电感耦合等离子光谱仪(ICP-OES)测定样品中19种元素含量.结果表明,采样期间PM2.5污染水平较高,均值达(90.5±41.2)μg·m-3,且郊区明显高于市区和背景参照点.所测无机元素的空间分布规律与PM2.5一致,但背景参照点元素Zn的浓度较高.采样期间Cd、As、Zn、Pb、S和Cu等人为污染元素的富集因子较高.因子分析结果表明冬季上海市PM2.5具有多源性,主要来源于燃煤、自然尘、燃油以及机动车.  相似文献   

13.
利用中流量空气颗粒物采样器在武汉市青山区进行连续采样,分析了2013年冬季大气PM_(2.5)的质量浓度,并采用ICP-AES方法研究了样品中19种金属元素的组成和特征。结果表明,PM_(2.5)质量浓度为47~353μg/m~3,参照《环境空气质量标准》(GB 3095-2012)中的二级标准,其中88.6%的样品质量浓度超标;富集因子分析结果表明Ca、Cu、Pb、Zn、Cd、Ni、Mn、Ti、V、As和Hg在PM_(2.5)中明显富集,主要来自人类活动;运用正定矩阵因子分解法(PMF)对PM_(2.5)来源进行了解析,结果表明交通源,工业源,路面扬尘,燃煤源和建筑源是武汉市青山区冬季PM_(2.5)的主要来源。  相似文献   

14.
太原市空气颗粒物中正构烷烃分布特征及来源解析   总被引:3,自引:3,他引:3  
为明确城市空气颗粒物中正构烷烃分布特征及污染来源,采集采暖和非采暖季环境空气PM10样品和典型排放源(高等植物、燃煤和机动车)样品,利用GC-MS测定正构烷烃,选取诊断参数并结合污染源排放特征讨论PM10中正构烷烃分布和来源,采用主成分分析法定量解析源贡献率.结果表明,环境空气PM10中正构烷烃含量呈较强时空变化,采暖和非采暖季浓度分别为213.74~573.32 ng·m-3和22.69~150.82 ng·m-3,前者总浓度最高是后者的18倍;采暖季郊区点位(JY、JCP、XD和SL)浓度均高于市区,以JY最高(577.32 ng·m-3),非采暖季工业区(JS)总烷烃量(150.82 ng·m-3)明显高于其它点位,是SL总量的7倍.采暖季化石燃料来源烷烃(C n≤C24)与总烷烃量相关性优于植物来源烷烃(C n≥C25),非采暖季相反,表明前者化石燃料输入较后者高.CPI和%WNA指示非采暖季植物贡献率较采暖季高,且植物蜡烷烃随环境压力的增大总产率增加;C max和OEP表明非采暖季PM10中有机质成熟度低于采暖季;两季样品TIC图均存在UCM鼓包,机动车尾气是该城市的重要污染源.PCA解析结果表明太原市环境空气PM10中正构烷烃首要排放源为机动车尾气和高等植物,约占51.28%;其次为煤烟尘,贡献率为43.14%.煤烟尘污染控制协同机动车尾气净化措施的完善将成为降低城市空气颗粒物中正构烷烃浓度的有效途径.  相似文献   

15.
乌鲁木齐市重污染期间PM_(2.5)污染特征与来源解析   总被引:1,自引:0,他引:1  
目前有关我国城市大气重污染期间PM2.5污染特征及其来源的研究较少,为深入了解典型城市大气重污染期间PM2.5的污染特征与来源构成,于2013年1月19—30日在乌鲁木齐市采集PM2.5样品,并依据相关划分标准,确定1月19—28日为重污染天气.分析了重污染天气下ρ(PM2.5)及主要化学组成(包括水溶性离子、无机元素和碳组分),运用统计学方法研究了重污染期间PM2.5的污染特征,并且采用富集因子法和CMB受体模型解析了PM2.5的来源构成.结果表明:大气重污染期间ρ(PM2.5)严重超标,其中米东区环境保护局采样点的ρ(PM2.5)最高,其次是铁路局、市监测站;PM2.5化学组分以SO42-、TC、Si和NO3-为主,其中二次离子占ρ(PM2.5)的43.1%;城市扬尘、煤烟尘和二次粒子是环境空气中PM2.5的主要污染源类,三者在乌鲁木齐市以及米东区的分担率分别为24.7%、15.6%、38.0%和20.8%、28.0%、36.2%,其中二次硫酸盐的分担率在两地更分别达到28.6%和27.0%.  相似文献   

16.
利用电感耦合等离子体质谱(ICP-MS)技术和统计学方法研究了哈尔滨市郊区采集的2012-2013年23个PM2.5样品的污染来源及特征。17种与污染源及健康相关的元素含量分布分析表明,冬季和夏季的燃煤、汽车尾气排放对PM2.5的贡献率最显著,且四季中其它污染源也有稳定的贡献率。对PM2.5四季样品中的47种元素进行富集因子分析,结果表明,Zn、Cu、Mo、Cd、Pb、In、Sb、Tl、Bi等9种元素富集因子(EF)值大于10,元素来自于人为源,其他38种元素的EF值小于10,来自土壤或扬尘等自然源;聚类分析表明,人为源元素中In、Bi、Tl、Cd、Pb、Mo、Sb主要来自煤炭燃烧、Cu、Zn主要来源于汽车尾气。  相似文献   

17.
海口市PM_(2.5)和PM_(10)来源解析   总被引:1,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   

18.
于2015年春季和冬季在北京、唐山市区进行了大气环境PM_(2.5)样品采集,分析了PM_(2.5)的污染特征和来源。北京、唐山市区冬季PM_(2.5)质量浓度分别为93.9,104.1μg/m~3,是春季的1.1和1.5倍;各采样点春、冬季水溶性无机离子可占PM_(2.5)的43.1%~45.4%和52.0%~54.2%。OC、EC和SOC浓度均呈现出冬季大于春季的变化规律,冬季SOC浓度较高主要是由于采暖燃煤导致前体物浓度升高,不利于扩散的气象条件使污染物易发生大气氧化反应。分析结果表明:扬尘源、移动源、燃煤源和生物质燃烧是各采样点PM_(2.5)的主要来源,唐山市区的生物质燃烧源贡献(21.148%~23.147%)要明显大于北京市区(16.900%~18.150%),因此对于唐山市区要加强生物质燃烧的控制。  相似文献   

19.
邯郸市PM_(2.5)中水溶性无机离子污染特征及来源解析   总被引:3,自引:1,他引:3  
本研究通过对邯郸市环境空气中PM2.5样本进行采集和成分检测,分析了该地区PM2.5中水溶性无机离子的污染特征,并结合气象要素(风速、温度)、气态污染物(O3、NO2、SO2、CO)、SOR(硫氧化率)、NOR(氮氧化率)对其主要来源进行了解析.研究结果表明:总水溶性无机离子(TWSII)浓度季节变化特征明显,秋、冬季高于春、夏季.SO2-4、NO-3、NH+4是PM2.5中主要的水溶性无机离子,在TWSII中所占的比例为夏(93.2%)冬(85.6%)秋(85.5%)春(84.0%).春、夏、秋三季PM2.5呈酸性,冬季显碱性.此外还分析得到,SO2-4在四季中均以(NH4)2SO4的形式存在.NO-3在冬季以NH4NO3的形式存在,其余季节中以NH4NO3、HNO3等共存.绝大部分Cl-在冬季以NH4Cl的形式存在,其它季节中以NH4Cl、KCl等的形式存在.均相反应是SO2-4的主要生成途径,夏、冬季也伴随有非均相反应.NO-3的生成以均相反应为主(春、夏、秋),在冬季均相反应与非均相反应同时存在.应用因子分析法解析出4个主因子,其中,工业、燃煤、交通、生物质燃烧等综合源是PM2.5中水溶性无机离子的主要来源.  相似文献   

20.
为探讨厦门市大气PM_(2.5)水溶性离子污染特征及来源,于2014年8月和12月同步采集了城区和郊区的PM_(2.5)样品.用离子色谱分析了9种水溶性离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、Na~+、K~+、NH_4~+、Ca~(2+)和Mg~(2+))的质量浓度.结果表明,厦门大气PM_(2.5)中水溶性离子浓度处于较低水平,总水溶性离子浓度(μg/m~3)顺序为:冬季城区(18.16)冬季郊区(14.55)夏季郊区(6.87)夏季城区(5.33),降水对水溶性离子有显著的去除作用.观测期间,夏季PM_(2.5)阴离子相对亏损,冬季反之.SO_4~(2-)、NO_3~-、NH_4~+(简称SNA)占全部水溶性离子质量浓度之和的比例达79.64%以上,表明厦门市大气PM_(2.5)二次污染较严重.相关性分析和SNA三角图解表明厦门市夏季NH_4~+主要以(NH4)2SO4的形式存在,其次为NH_4NO_3及碱性游离NH_4~+;冬季则主要以(NH_4)_2SO_4和NH_4NO_3的形式存在,其次为NH_4Cl.N/S值表明夏季PM_(2.5)中水溶性离子污染特征以燃煤源排放为主,冬季以交通排放为主,总体呈现出交通源与燃煤污染并存的复合型污染特征,但受海洋源的影响很小.主成分分析进一步表明厦门市大气PM_(2.5)水溶性离子主要来自燃煤源、交通排放和生物质燃烧源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号