首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Pd/CZ/Al2O3催化剂的制备、表征与三效催化性能   总被引:6,自引:0,他引:6  
Fang SP  Chen HD  Tian Q  Yao Q  Han Y 《环境科学》2005,26(5):12-16
以共浸渍法制得的氧化铝负载铈锆固溶体为载体,并浸渍贵金属Pd得到了Pd/CZ/Al2O3催化剂.实验结果表明,该催化剂在老化前后都表现出良好的三效催化活性,新鲜样品Pd/CZ/Al2O3活性与Pd/CZ相当,老化后样品前者优于后者.结合XRD,BET,TPR等表征手段,讨论了Pd/CZ/Al2O3的催化活性特别是高温老化后活性与其组成结构之间的内在关系,揭示了其老化后仍具有较高活性的主要原因在于保持了Pd与CZ/Al2O3复合载体之间的强相互作用(SMSI).  相似文献   

2.
Series of Fe/Cu-SSZ-13 catalysts with different Fe loading content were synthesized by simple one-pot strategy. The obtained catalysts were subjected to selective catalytic reduction (SCR) of NOx with NH3 and were characterized by various techniques. The results show that Fe0.63/Cu1.50-SSZ-13 catalyst with proper Fe content exhibits excellent catalytic activity with widest operation temperature window from 160 to 580°C, excellent hydrothermal stability as well as good resistance to sulfur poisoning when compared with Cu-SSZ-13, signifying its great potential for practical applications. Further characterizations reveal that the synthesized Fe/Cu-SSZ-13 catalysts present typical chabazite (CHA) structure with good crystallinity, while isolated Cu2+ and monomeric Fe3+ are revealed as the predominant copper and iron species. At low temperatures, isolated Cu2+ species act as primary active sites for SCR reaction, while monomeric Fe3+ species provide sufficient active sites for sustain the SCR activity at high temperature. Moreover, Fe over doping would lead to the damage of zeolite structure, destruction of isolated Cu2+ site, as well as the formation of highly oxidizing Fe2O3, thus causing deterioration of catalytic performances.  相似文献   

3.
合成了3个氨基乙醇席夫碱Cu2+配合物并进行了表征.利用分光光度法考查了配合物催化降解酸性蓝9的性能和动力学曲线;利用Graph Pad Prism 5软件进行了米氏常数的测定;利用HPLC法测定了降解产物.发现配合物均为单核五配位配合物.发现配合物能催化废水中酸性蓝9降解,催化活性Cu Cl Lb·H2O最好,Cu Cl La·H2O其次,Cu Cl Lc·H2O最差,说明给电子基团有利于催化活性,位阻基团不利于催化活性.发现Cu Cl La·H2O、Cu Cl Lb·H2O催化酸性蓝9的V-S曲线与米氏方程吻合,米氏常数分别为1.35×10-2mmol·L-1和1.54×10-2mmol·L-1,说明催化过程具有酶促特性,Cu Cl La·H2O与底物的结合能力比Cu Cl Lb·H2O与底物结合能力弱.发现降解产物有顺式丁烯二酸.推测了配合物的催化机理和酸性蓝9的降解机制.得到了两个性能优良的酸性蓝9降解的仿酶催化剂,催化活性可以通过基团进行调控,为开发新的染料废水的有效治理技术提供了理论和实践支持.  相似文献   

4.
采用浸渍法制备了一系列以成型TiO2为载体的Mn-Co/TiO2低温SCR催化剂,研究分析了活性组分担载量、Mn含量、焙烧温度、焙烧时间等制备参数和进口NO浓度、空速、O2体积分数、NH3/N2摩尔比等操作条件对催化剂脱硝反应活性的影响.结果表明:活性组分担载量为30%,Mn/(Mn+Co)摩尔比为80%,在500℃下焙烧6 h得到的Mn-Co/TiO2催化剂具有较高的NO转化率;在进口NO浓度为600×10-6、O2体积分数6%、空速10000 h-1、150℃条件下,NO脱除率接近100%.  相似文献   

5.
A series of H-SAPO-34 zeolites were synthesized by a hydrothermal method in fluoride media. The as-synthesized H-SAPO-34 zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, temperature-programmed desorption of NH3 (NH3-TPD) and nuclear magnetic resonance (NMR) measurements. The results showed that a certain concentration of F anions promoted the nucleation and crystallization of H-SAPO-34. The H-SAPO-34 synthesized in the fluoride media showed high crystallinity, uniform particle size distribution, large specific surface area and pore volume, and enhanced acidity. Therefore, Cu/SAPO-34 based on the fluoride-assisted zeolite showed a broadened temperature window for the selective catalytic reduction of NO by NH3 (NH3-SCR) reaction due to the enhanced acidity of the zeolite and the improved dispersion of copper species.  相似文献   

6.
采用间歇曝气方法处理低氨氮浓度生活污水,在SRT 10、 5、 2.5和1.25 d条件下,SBR反应器出水中NO-2含量(以N计,下同)为18、 19、 14和5 mg/L,积累率达到73%、 85%、 91%和78%,而连续曝气SBR仅为14%、 21%、 31%和34%;同时氨氮去除率维持在97%、 95%、 76%和39%,与连续曝气SBR的92%、 97%、 71%和47%相当.对硝化菌的生长动力学分析表明,在间歇曝气硝化系统中,氨氧化菌(AOB)可以通过产率系数(YAOB)的增加来提高自身在反应器中的绝对生物量,并补偿因间歇曝气引起的比底物利用速率下降,从而使比增殖速率(μm)和NH+4的氧化速率不变.与此相反,亚硝酸盐氧化菌(NOB)却不具备这种补偿特性,导致其μm和对NO-2氧化速率降低,引起了NO-2在出水中积累.  相似文献   

7.
Herein, a novel direct Z-scheme photocatalyst was accomplished by hybridization of 0D MoS2 quantum dots (MSQDs) and 3D honeycomb-like conjugated triazine polymers (CTP) (namely, CTP-MSQD). The unique 0D/3D hierarchical structure significantly enhanced the exposure of active sites and light harvesting property, while the formed p-n junction enabled the direct strong interface coupling without the necessity of any mediators. The optimized CTP-MSQD3 exhibited continuously increased visible-light-driven photocatalytic activity and strong durability both in Cr(VI) reduction and H2 evolution, featured a rate of 0.069 min−1 and 1070 µmol/(hr∙g), respectively, which were 8 times than those of pure 3D-CTP (0.009 min−1 and 129 µmol/(hr∙g)). We believe that this work provides a promising photocatalyst system that combines a 0D/3D hierarchical structure and a Z-scheme charge flow for efficient and stable photocatalytic conversion.  相似文献   

8.
Processes based on non-thermal plasma (NTP) for indoor air treatment inevitably lead to the formation of toxic by-products such as ozone (O3) and nitrogen oxides (NOx). Adding a step of heterogeneous catalysis in series with NTP could allow for the decomposition of the by-products. Therefore, different catalysts were developed based on transition metal oxides, such as NiOx, CoOx and MnOx with different weight percentage 1, 5 and 10 wt.%, deposited on a γ-Al2O3 support. The O3 removal efficiency (ORE) and the NOx removal efficiency (NRE) were very encouraging in dry air: about 65% and 80%, respectively, by using 2 g 5 wt.% MnOx/Al2O3 catalyst under the experimental conditions. However, strongly negative effects of relative humidity (RH) on the catalytic decomposition performance were observed. To overcome this limitation, the catalyst surface was modified to make it hydrophobic using a cost-effective chemical grafting method. This treatment consisted in impregnating the 5 wt.% MnOx/Al2O3 catalyst with different trichloro(alkyl)silanes (TCAS). The effects of different linker lengths and amounts of TCAS for the hydrophobicity and the decomposition performance of surface-modified catalysts under humid conditions were investigated. Our results show that the surface-modified catalyst with the shortest linker and 0.25 mmol/gcat of modifying agent represents the best catalytic decomposition performance for O3. Its ORE is 41% at 60% RH, which is twice that of the non-modified catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号