首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene flow between cultivars within a landscape may lead to impurities that reduce harvest value. In OSR, as for most crops, impurity rates are expected to depend on the spatial distribution of crops over the landscape. However, in contrast to other well-studied crops such as maize, OSR crops generate seed banks in European agro-ecosystems. Gene flow is thus a spatio-temporal process which depends on cropping systems. We therefore aimed at identifying spatial variables that have an effect on regional or local harvest impurities, taking account of the time since the introduction of OSR crops in the regions and of cropping system. Gene flow was simulated over 36 field patterns cultivated with either 15% or 30% of OSR fields, among which 10% or 50% were GM, for three contrasted cropping systems, with the GeneSys software already used for EU co-existence studies. Through regression analyses, we determined spatial and agronomic factors that most affected harvest impurity rates of non-GM OSR after one or seven years of OSR cultivation. The cropping system was the main factor explaining regional harvest impurity rates. Its importance increased after six years of OSR cultivation. For a given cropping system, the regional impurity rate after one year increased linearly with the current proportion of GM crop. In contrast, impurity rates after six years largely depended on the proportions of OSR crop (GM or not) in the two preceding years. During the first year of OSR cultivation, local impurity rates were mostly explained by the distance to the closest GM field. After six years, these rates were mostly explained by the density of GM volunteers in the analysed field and, to a lesser degree, to that of volunteers in neighbour non-OSR fields. Cropping systems were most important in determining impurity rates and the way impurity rates related to regional or local factors. Determination of isolation distances to ensure harvest purity should thus consider past history of OSR cultivation in the area and, in particular, how current or future cropping systems will manage volunteers. Regression quantiles were fitted to the simulated data to determine regional rules (i.e. the maximum regional area of GM OSR and isolation distances between GM and non-GM crops) as a function of the risk accepted by the decision-maker (i.e. the % of situations exceeding harvest impurity thresholds), the cropping system and the volunteer infestation.  相似文献   

2.
Coastal areas commonly consist of an environment of intense economic uses and are thus exposed to conflicts between anthropogenic activities and biodiversity. While several approaches of nature protection have been applied to the terrestrial domain, aquatic biotopes frequently still lack a good ecological state as required by EU policies (WFD and MSFD). For numerous years, the underwater world has been considered as one sphere and was neglected in the development of distinctive concepts of conservation for its variety of biotopes. This paper’s objective is the enhancement of ecological connectivity within the study area through the design of benthic wildlife corridors and a consequent sublittoral biotope network. A step-by-step approach is presented for the optimization of ecological potential in heavily modified coastal water bodies, using Kiel Fjord (Western Baltic Sea) as a case study. The procedure for the development of wildlife corridors includes defining and mapping of existing biotope types, the identification of key species for each biotope type and delineating their mobility range, the reconstruction of near-natural / pre-industrial conditions and deriving the protection priorities by comparing past with current / modified conditions. By harmonizing these scientific insights with the local land use of human society, proposals for biotope restoration and improvements can be made. In Kiel Fjord, compensation measures, obligatory for human interventions, such as construction work in the marine environment in this case, have been implemented and present an opportunity to enhance the connectivity of biotopes, thus creating wildlife corridors for their inhabitants. The composition of benthic wildlife corridors, forming a sublittoral biotope network in accordance with the present anthropogenic uses, holds potential for implementation in comparably altered coastal water bodies and integration into national and international frameworks, in anticipation of its functionality.  相似文献   

3.
Little is known about the biodiversity of free-living nematodes. We have attempted to provide baseline information about the natural diversities (those not influenced by pollution) that might be expected in six biotopes. Seventeen marine nematode data sets consisting of 197 samples were standardized to allow a comparison of alpha diversity, or sample diversity, from temperate estuarine, tropical sublittoral, temperate sublittoral, bathyal, abyssal, and hadal biotopes, which were selected on criteria of depth and latitude. The diversity analysis methods we employed were rarefaction curves; three weighted diversity indices of species richness, SR, H', and ES(X); and two equitability indices, J' and V. Diversity was significantly different in the six biotopes. The weighted indices of species richness were more capable of resolving differences between the biotopes than were the equitability indices, whose large standard errors suggested that they were more influenced by local, small-scale ecological factors. This suggests that species richness is a better measure than equitability for large-scale comparisons of biotopes or regions. The ES(X), which is robust to sample size variations, was more efficient than the weighted indices of species richness, which were easily influenced by sample size. There was a nonlinear relationship between depth and diversity with the bathyal and abyssal biotopes displaying the highest diversity. The tropical sublittoral biotope was not more diverse than the temperate sublittoral biotope. The lowest diversities were found in the physically challenging temperate estuarine and hadal biotopes.  相似文献   

4.
Background, Aim, and Scope The introduction of genetically modified plants (GMP) into the European agriculture primarily has been investigated in respect of economical aspects, its impacts on conventional crops, and direct or indirect effects on human health. Potential ecological impacts, especially their long term and large scale implications, were out of focus, usually. A special task is to protect the integrity of nature reserves. According to §?23 of the German Nature Protection Law (BNatSchG) nature reserves are to protect nature and landscape properties by preserving and developing existing as well as by re-establishing biotopes of wild and endangered species. According to §?34a of the BNatSchG the use of GMP has to be accompanied by an environmental impact analysis of possible risks like it has to be done in projects affecting the integrity of Flora-Fauna-Habitats (FFH) or European bird sanctuaries. Considering this, the joint research project “Recommendations for isolation distances concerning the cultivation of genetically modified plants in the neighbourhood of protected areas” which was promoted by the Federal Agency for Nature Conservation (BfN) aimed at describing possible risks for biocoenoses in conservation areas that could be caused by the cultivation of GMP in their vicinity and at evaluating measures which could mitigate or hinder negative effects. The article at hand concentrates on describing the implications which would emerge when introducing different isolation distances concerning the cultivation of herbicide resistant oil seed rape (HR-OSR) and insect resistant maize (B.?t.-maize) near protection areas. On the other hand, a methodology is introduced which was developed to classify the German nature reserves according to their potential endangerment by GMP cultivation and to minimise calculation efforts for modelling possible impacts. Materials and Methods In 2003, there were around 7,400 nature reserves which covered 3?% of the whole territory of Germany. A geographical information system (GIS) was used to integrate geometries of conservation areas, land use data (CORINE landcover), agricultural information on district level as well as a map of German ecoregions. At first, it was evaluated how much arable land for B.?t.-maize or HR-OSR cultivation would remain if introducing different isolation distances around nature reserves (NSG). Furthermore, the NSG were aggregated to several homogenous classes reflecting different levels of cultivation intensities in their vicinity and different geometric properties. This was realised calculating a geometric coefficient (GC) which describes the ratio of periphery and area of each NSG in order to abstract the risk of GMP invasion. The density of maize and rape cropping near the NSG was expressed by a cultivation coefficient (CC). According to regional agricultural surveys, this was calculated by adding up the area of maize and rape fields within a radius of 1,000?m (maize) and 4,000?m (rape), respectively, around the NSG. Results Considering an isolation distance of 1,000?m around the NSG, 90?% of the farmland in Germany would be available for GMP cultivation. 50?% would remain when establishing an isolation distance of 4,000 m. The combination of GC and CC resulted in a total of nine risk categories (RC) describing the potential risk of endangerment by GMP cultivation in the vicinity of NSG. Areas with highest risk were grouped in RC nine where the smallest NSG (+ GC) in the main cultivation areas of maize or corn (+ CC) were summarised. With a numerical proportion of 7?% those sites cover only 0.4?% of total area of all NSG. All nature reserves showing highest CC values had a total proportion of 60?%. Discussion The derivation of GC and CC was based on a hierarchical approach and was implemented by complex GIS procedures. This makes it easy to calculate additional values for different GMP, protection areas or isolation distances. The RC were useful for choosing representative modelling sites in order to minimise calculation efforts when modelling possible impacts of GMP cultivation in vicinity of nature reserves. Conclusions The assessment of isolation distances around protection areas should be performed for each area individually concerning the GMP specific effects and dispersal properties as well as the protected organisms and the main protection targets. Especially HR-OSR is critical because of its volunteers and hybridisation partners. Another main source of GMP dispersal into protection areas might be the contamination of conventional seeds with transgene OSR seeds. Recommendations and perspectives Before defining and applying particular measures in order to protect conservation areas from possible impacts due to GMP cultivation a political and societal discussion is necessary in order to assess which GMP induced impacts may be tolerated. This has to be supported by additional scientific studies based on empirical and estimated data evaluating possible dispersal distances of GM pollen and possible environmental impacts of released transgenes and their toxins. According to the EU Directive 2001/18/EC the cultivation of GMP should be accompanied by a case-specific monitoring and general surveillance, as well. It should be realised as soon as possible, since the release and the cultivation of GMP in Germany have been started, already. The monitoring should be complemented by the implementation of a web-based geoinformation system (WebGIS) which enables the compilation and evaluation of the data and relevant geodata.  相似文献   

5.
6.
Strategies for conserving plant diversity in agroecosystems generally focus on either expanding land area in non-crop habitat or enhancing diversity within crop fields through changes in within-field management practices. In this study, we compare effects on landscape-scale species richness from such land-sharing or land-sparing strategies. We collected data in arable field, grassland, pasture, and forest habitat types (1.6 ha sampled per habitat type) across a 100-km2 region of farmland in Lancaster County, Pennsylvania, USA. We fitted species-area relationships (SARs) for each habitat type and then combined extrapolations from the curves with estimates of community overlap to estimate richness in a 314.5-ha landscape. We then modified these baseline estimates by adjusting parameters in the SAR models to compare potential effects of land-sharing and land-sparing conservation practices on landscape richness. We found that species richness of the habitat types showed a strong inverse relationship to the relative land area of each type in the region, with 89 species in arable fields (66.5% of total land area), 153 in pastures (6.7%), 196 in forests (5.2%), and 213 in grasslands (2.9%). Relative to the baseline scenario, major changes in the richness of arable fields produced gains in landscape-scale richness comparable to a conversion of 3.1% of arable field area into grassland habitat. Sensitivity analysis of our model indicated that relative gains from land sparing would be greatest in landscapes with a low amount of non-crop habitat in the baseline scenario, but that in more complex landscapes land sharing would provide greater gains. These results indicate that the majority of plant species in agroecosystems are found in small fragments of non-crop habitat and suggest that, especially in landscapes with little non-crop habitat, richness can be more readily conserved through land-sparing approaches.  相似文献   

7.
Most crop pests find a suitable host through chemical cues released from plants, but little is known about the odorscape encountered by host-seeking gravid females under natural, outdoor conditions. In this field study, the volatile organic compound (VOC) composition of maize (Zea mays, L.), a host for the European corn borer (ECB) (Ostrinia nubilalis Hüb.) was characterized during the oviposition flight and compared with a forest odorscape. VOCs from maize fields and the forest atmosphere were collected by solid phase microextraction and characterized by gas chromatography-mass spectrometry. The electroantennographic (EAG) response of female ECB antennae to candidate VOCs was tested. Analyses revealed clear differences between the maize field and the forest odorscapes, mainly composed of ubiquitous VOCs but in specific ratios. The maize field odorscape is more complex than the forest odorscape for maize found 18 VOCs but only eight in the forest. Both biotopes shared seven VOCs—green leaf volatiles (GLV), monoterpènes (MT) and homoterpenes. In addition, we found in the forest a distinctive sesquiterpene (SQT) identified as isoledene. The highest EAG responses were elicited by two GLVs and a MT shared by the two biotopes. SQT elicited weak EAG responses, except β-farnesene, only found in the maize field odorscape. Our results suggest that the two biotopes produce specific chemical signatures that insects may use as host cues. To the best of our knowledge this paper is the first report on the maize odorscapes under field conditions. The putative role of the VOCs in host plant detection and selection is discussed.  相似文献   

8.
Abstract: Many of the skills and resources associated with botanic gardens and arboreta, including plant taxonomy, horticulture, and seed bank management, are fundamental to ecological restoration efforts, yet few of the world's botanic gardens are involved in the science or practice of restoration. Thus, we examined the potential role of botanic gardens in these emerging fields. We believe a reorientation of certain existing institutional strengths, such as plant‐based research and knowledge transfer, would enable many more botanic gardens worldwide to provide effective science‐based support to restoration efforts. We recommend botanic gardens widen research to include ecosystems as well as species, increase involvement in practical restoration projects and training practitioners, and serve as information hubs for data archiving and exchange.  相似文献   

9.
Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat perspective in managing these landscapes.  相似文献   

10.

Background

The coexistence of agricultural production with and without the use of genetically modified (GV) crops is supposed to be made possible in Germany by regulations, which include minimal distances of GV-fields to potentially susceptible crop fields and habitats. To explore the impact of these regulations on region specific coexistence potentials, we broadened the applicability of an existing method for the simulation of the spatial distribution of arable fields cropped with conventional, organic and GV-maize. We used simulations which combine a variety of minimum distances of GV-maize fields to assess regional specific options and limitations for coexistence.

Results

An existing method was extended to be applicable for different spatial scales, from the large (e.g. Federal State) to small (e.g. municipality). Input data consisted of cropping statistics, geometry of arable fields and protected areas. Scenarios of cropping situations included various minimal distances between GV-maize fields and protected areas and various proportions of maize within the areas. The results of the simulations represent possible distribution patterns of non-GV and GV-maize fields as well as the size of the remaining area in which additional GV-maize can be grown without violating the minimal distance rules. As suspected, increasing proportions of GV-maize and increasing minimal distances lower the areas suitable for additional GV-maize. However, the relation between the area of GV-maize grown and those suitable for GV-maize cultivation varied between the scenarios. Moreover, the variability between the municipalities was even more evident, due to varying landscape structure (proportion of maize, the ratio total arable land to maize, proportion of protected areas). Areas with high proportions of GV-maize, of protected areas and of maize could be problematical for coexistence. We discuss these parameters with regard to other coexistence studies.

Conclusions

Our method is suitable to simulate the spatial distribution of fields cultivated with GV-crops and non-GV-crops on various scales. Simulations on the scale of a Federal State reveals those areas, in which coexistence could be problematical. Simulations on a county scale, however, allow more insight into options and restrictions for coexistence in relation to landscape structural characteristics, which also can be transferred to larger scales. On the scale of municipalities simulations can help to analyse the limits of coexistence in areas of high conflict potential, moreover this level is more realistic with regard to practical agricultural decisions on the farm level.

Zusammenfassung

Hintergrund

Die Koexistenz verschiedener landwirtschaftlicher Produktionsformen ?C mit und ohne Anbau von gentechnisch ver?nderten Pflanzen (GVO) ?C soll durch gesetzlich fixierte Regeln erm?glicht werden, die unter anderem die Mindestabst?nde von GVO-Anbaufl?chen zu potenziell empfindlichen anderen Ackerfl?chen und Biotopen festlegen. Hier wurde eine Methode weiterentwickelt zur Simulation der r?umlichen Verteilung der Anbaufl?chen von konventionellem, ?kologischem und GV-Mais um regionsspezifische Koexistenzpotenziale von gentechnisch ver?ndertem Mais, sowie potenzielle Konfliktgebiete zu identifizieren.

Ergebnisse

Eine für Brandenburg entwickelte GIS-Simulationsmethode wurde durch die Verwendung fl?chendeckend vorhandener Daten so erweitert, dass sie bundesweit übertragbar ist und auf unterschiedlichen r?umlichen Skalenebenen angewandt werden kann, von gro?r?umig (Bundesland) bis lokal (Gemeinde). Als Eingangsdaten wurden Anbaustatistiken sowie Geometrien der Ackerfl?chen und von FFH- und Naturschutzgebieten verwendet. In den Szenarien wurden Abstandsregelungen zwischen Maisanbaufl?chen und zu Schutzgebieten und der GV-Maisanteil variiert. Die Ergebnisse der Simulation sind m?gliche r?umliche Verteilungen von Nicht-GV-Mais und GV-Mais sowie die potenziell für den Anbau von GV-Mais zur Verfügung stehende Fl?che. Mit zunehmendem GV-Maisanteil und Mindestabst?nden zu Schutzgebieten wird die für den GV-Mais zur Verfügung stehende Fl?che st?rker ausgesch?pft. Der Anteil des GV-Mais an der potenziell für den Anbau von GV-Mais zur Verfügung stehenden Fl?che variierte zwischen den Szenarien, und noch st?rker jedoch regional zwischen den Landkreisen, verursacht durch deren verschiedene agrar- und landschaftsstrukturelle Ausstattung (Maisanbauanteil, Verh?ltnis Ackerlandsanteil/Maisanbauanteil, Schutzgebietsanteil). Ein r?umliches Konfliktpotenzial bei der Umsetzung der Koexistenz ist in Gebieten hohen Nutzungsdrucks zu erwarten, d.h. in denen sowohl der Maisanbauanteil an der Ackerfl?che und der Anbauanteil von GV-Mais, als auch der Schutzgebietsanteil hoch sind. Diese Faktoren werden diskutiert in Bezug zu Ergebnissen weiterer Koexistenzstudien.

Schlussfolgerungen

Die vorgestellte Methode ist geeignet, die r?umliche Verteilung des Anbaus von Nicht-GV-Mais und GV-Mais auf unterschiedlichen Skalenebenen zu simulieren: Die Ebene eines Bundeslandes liefert Hinweise auf Gebiete, in denen die Koexistenz problematisch sein k?nnte und kann als Grundlage weiterer Berechnungen, wie zum Beispiel der Modellierung von Genflüssen auf Landesebene dienen. Die Simulation auf der Ebene eines Landkreises oder einer Gemeinde erm?glicht genauere Aussagen über die M?glichkeiten und Grenzen der Koexistenz. Auf der Ebene der Landkreise k?nnen z.B. unterschiedliche agrar- und landschaftsstrukturelle Situationen untersucht und für eine nachfolgende Regionalisierung angewandt werden. Die Ebene der Gemeinden erlaubt die Analyse der Grenzen der Koexistenz für Gebiete mit h?herem r?umlichen Konfliktpotenzial. Simulationen auf lokaler Ebene erscheinen darüber hinaus n?her an den Entscheidungsm?glichkeiten der landwirtschaftlichen Praxis.  相似文献   

11.
The availability of observed daily solar radiation (OSR) is restricted to recent years. Its estimation through different methods is necessary to develop long-term data sets for agricultural and environmental applications. The objective of this study was to analyze the impact of using generated daily solar radiation (GSR) on simulated growth and yield of cotton, maize, and peanut. Nine locations representing Georgia's major crop belt were selected. Daily weather data from the Georgia Automated Environmental Monitoring Network (AEMN), including solar radiation, maximum and minimum temperature, and precipitation, were duplicated. The OSR was removed from one set and then generated using a stochastic procedure. The Cropping System Models (CSM)-CROPGRO-Cotton, CERES-Maize, and CROPGRO-Peanut of the Decision Support System for Agrotechnology Transfer (DSSAT) v4 were used to simulate crop growth and yield at each location with both OSR and GSR and for rainfed and irrigated conditions. The statistical analysis included summary statistics, Pearson's coefficient of correlation, mean squared deviation (MSD) and its components, namely: squared bias (SB), squared difference between standard deviations (SDSD), lack of correlation weighted by the standard deviations (LCS), and regressions. Within locations, for the three crops under rainfed and irrigated conditions, GSR did not significantly affect simulated total evapotranspiration and aboveground biomass and yields. For the three crops, deviations of simulated water use and yields from GSR with respect to simulated water use and yields from OSR were lower for the rainfed than for the irrigated conditions. Yields from the CSM-CROPGRO-Cotton and -Peanut models had lower deviations than yields from the CSM-CERES-Maize model. LCS was the major component of the MSD suggesting that the extent of the difference between standard deviations of GSR and OSRG could affect the outputs of the crop models. Nevertheless, for most locations none of the MSD components of the GSR showed significant correlation with simulated yields and the overall performance of the models was not affected. It can be concluded based on the results of this study that GSR can be used as an input for crop model simulation models when OSR is not available.  相似文献   

12.
A theory of gene dispersal by wind pollination can make an important contribution to understanding the viability and evolution of important plant groups in the Earth's changing landscape and it can be applied to evaluate concerns about the spread of engineered genes from genetically modified (GM) crops into conventional varieties via windborne pollen. Here, we present a model of cross-pollination between plant populations due to the wind. We perform a ‘mass budget’ of pollen by accounting for the number of pollen grains from release in the source population, dispersal from the source to the sink population by the wind, and deposition on receptive surfaces in the sink population. Our model can be parameterised for any wind-pollinated species, but we apply it to Brassica napus (oilseed rape or canola) to investigate the threat posed by wind pollination to GM confinement in agriculture. Specifically, we calculate the maximum feasible distance at which a particular level of windborne gene dispersal could be attained. This is equivalent to the separation distance between populations or fields required to achieve a given threshold of gene dispersal or adventitious GM presence. As required, model predictions of the upper bounds on levels of wind-mediated gene dispersal exceed observations from a wide range of published studies. For a level of gene dispersal below 0.9%, which is the EU threshold for GM adventitious presence, we predict that the maximum feasible distance for agricultural fields of B. napus is 1000 m, regardless of field shape and direction of prevailing winds. For fields closer than 1000 m, our model results do not necessarily imply that the 0.9% threshold is likely to be breached, because in this instance we have conservatively set the values of parameters where current knowledge is limited. We also predict that gene dispersal is reduced by 50% when the lag in peak flowering between the source and sink populations is 13 days, and reduced by 90% when the lag is 24 days. We identify further measurements necessary to improve the accuracy of the model predictions.  相似文献   

13.
14.
Interspecies or intraspecies cooperation can be stabilized evolutionarily if choosing partners favor beneficial partners and discriminate against non-beneficial partners. We quantified such partner choice (symbiont choice) in the leafcutter ant Atta texana (Attini, Formicidae) by presenting the ants in a cafeteria-style preference assay with genotypically distinct fungal cultivars from A. texana and Acromyrmex versicolor. Symbiont choice was measured as the ants' tendency to choose one or more cultivar(s) from several pure (axenic) cultivar fragments and convert a given fungal fragment into a garden. Microsatellite DNA fingerprinting enabled us to identify the cultivars chosen by the ants for their gardens. In 91% of the choice tests, A. texana workers combined multiple cultivars into a single intercropped, chimaeric garden, and the cultivars coexisted in such chimaeric gardens for as long as 4 months. Coexistence of distinct fungal genotypes in chimaeric gardens appears to contradict a recent model of cultivar competition postulating that each cultivar secretes incompatibility compounds harming other cultivars, which presumably would preclude the intercropped polyculture observed in our experiments. Although we found no clear evidence of novel, recombinant genotypes in the experimental chimaeric gardens, the intercropping of cultivar genotypes may occasionally lead under natural conditions to exchange of genetic material between coexisting cultivars, thus introducing novel cultivar genotypes into the leafcutter symbiosis. Symbiont choice by ants and any competition between coexisting cultivar strains in chimaeric gardens do not appear to operate fast enough in our laboratory assay to convert chimaeric gardens into the monocultures observed for A. texana under natural conditions.  相似文献   

15.
For the two biosphere-reserves of Schorfheide-Chorin and Spreewald in the Federal State of Brandenburg, Germany, we designed a concept for a monitoring program of ecosystems which is feasible and inexpensive, and whose methodical development is transferable to other large-scale protected areas. Beside the statistical analysis of hard GIS data, we systematically used additional criteria such as naturalness, scarcity and special management, a based on expert knowledge. Thus, after an inventory of the existing ecosystems, we selected the ecosystems to be monitored from the different ecosystem groups (i.e. woods and forests, fens, lakes, rivers, arable land and grasslands) based on the following four criteria:
  1. dominance,
  2. naturalness,
  3. nation-wide scarcity and
  4. special management.
We then combined the selected ecosystems with their relevant forms of landuse to so-called ecosystem-landuse-complexes, which reflect the natural conditions as well as the human impact in the biosphere reserves. This paper presents the selection of the ecosystem landuse complexes to be monitored. Thus, for both biosphere reserves, we obtained 32 ecosystem landuse complexes in woods and forests, 32 in fens, 53 in lakes, 7 in rivers, 23 in grasslands and 20 in arable land.  相似文献   

16.
K. Gocke 《Marine Biology》1976,35(4):375-383
In 5 different biotopes (sea water, brackish water, lake, river, and sewage waters), respiration, as percent of the total uptake of 9 compounds and an amino-acid mixture, was studied. Strong variations between the biotopes could be demonstrated. Percentage respiration values varied between 11 and 57% for glucose, 20 and 37% for glucosamine, 13 and 36% for glycerol, 28 and 68% for aspartic acid, 1 and 16% for leucine, 3 and 19% for lysine, 15 and 64% for acetate, 15 and 60% for lactate, 52 and 79% for malate and between 21 and 36% for the amino-acid mixture. Despite these variations, the two amino acids leucine and lysine showed the lowest percentage and the two C 4-compounds aspartic acid and malate the highest percentage respiration in each biotope.

Beitrag Nr. 33 aus dem Sonderforschungsbereich Nr. 95 Wechselwirkung Meer-Meeresboden, Universität Kiel.  相似文献   

17.
18.
Summary Operational sex ratio (OSR) was proposed by Emlen and Oring (1977) as an empirical measure of the intensity of sexual selection. Few studies, however, have examined the link between OSR and levels of intrasexual competition, which may influence selection. We studied the seasonal relationship between OSR and female-female competition for mates in Wilson's phalarope (Phalaropus tricolor), a sex-role reversed, non-territorial shorebird. Positive correlations between four measures of OSR (Scan Ratio, Day Ratio, Focal Ratio, and Chase Ratio) indicated seasonal changes in the availability of mates for females. Changes in mate availability resulted from the interaction between paternal care and female emancipation, asynchronous spring arrival schedules of the sexes (Reynolds et al. 1986), and the effect of clutch failure on renesting opportunities. Measures of intrasexual competition (courtship chases, percent males defended, rate and intensity of mate defense, and female-male proximity) varied significantly within and among years. Univariate and multivariate correlations indicated general agreement between measures of OSR and estimates of intrasexual competition. Our results suggest that OSR may provide a useful estimate of the opportunity for sexual selection, especially in species with matedefense mating systems.  相似文献   

19.
Zooplankton samples collected in the Gulf of Marseille with a system of 10 horizontal nets permitted the study of the stratification in the upper first meter. The pontellid copepod Anomalocera patersoni Templeton is a very typical species in this near-surface biotope. Its occurrence in the uppermost water layer (0 to 10 cm) is denser than in the others. This copepod shows the greatest decrease of population density between the first and the second layer, and becomes rare from 40 to 100 cm.  相似文献   

20.
Operational sex ratio (OSR) theory predicts that sexual differences in potential reproductive rates (PRRs) create biases in the OSR and thus determine the relative strength of sexual selection (competition and choice) operating on each sex. Although this theory is well accepted, empirical studies that quantify it are still lacking. This paper presents such a study. I measured the natural OSR of Galilee St. Peter’s fish (Sarotherodon galilaeus) in the field (Lake Kinneret) and examined the direction of mate choice in the laboratory. The OSR in Lake Kinneret was male biased. Both a male-biased sex ratio and higher male reproductive rates (twice as fast as females) contributed to the skew in the OSR, but the sexual differences in PRR were shown to be the main factor causing variation in the OSR. Females, the sex with the lower PRR, were more selective for mates. The faster male reproductive rate may explain why females are more selective for mates despite varying less in quality. Received: 29 May 1995/Accepted after revision: 13 April 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号