首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The residual levels of organochlorine pesticides (OCPs) were examined in soils covering five types of land use along a salinity gradient on the Yellow River Delta. The most prominent OCPs were dichlorodiphenyltrichloroethane (∑DDT, arithmetic mean = 5.11 μg kg?1), hexachlorocyclohexane (∑HCH, 1.69 μg kg?1) and ∑endosulfan (10.4 μg kg?1). The spatial variability of OCPs composition shifted from γ-HCH and o,p′-DDT dominated pesticides in coastal soils to p,p′-DDE dominated pesticides in inland soils. In different land-use types, the percentages of β-HCH and p,p′-DDE are characterized by more recalcitrant components in decreasing order of vegetable fields, cereal fields, cotton fields, wetlands and tidal flats with increasing soil salinity. However, the less recalcitrant components, γ-HCH and o,p′-DDT, showed an opposite trend. Endosulfan sulfate predominated in all land-use types. Residual levels of β-HCH were affected by soil organic matter. The correlations between γ-HCH and clay content and between p,p′-DDE, o,p′-DDT and salinity might associate with the influence of sediment cotransport by the Yellow River and the density of anthropogenic activities in coastal region. Depth distribution of the OCPs in typical soil profiles also implied that local historical usage and sediment transport by the Yellow River both affected the OCPs residual in this region.  相似文献   

2.
Abstract

Extensive surveys of sediment burdens of radiocaesium, specifically 137Cs, and other radioactive contaminants in the Arctic during the 1990′s, indicate that almost all anthropogenic radionuclides buried on continental shelves adjacent to Alaska are derived from global bomb fallout. the 137Cs (half-life: 30.2y) activities observed in surface (0–4 cm) marine sediments however, vary widely, albeit much less than the expected current inventory resulting from bomb fallout at this latitude (~100mBq cm?2). This observed geographical variation provided the opportunity to evaluate physical and biological mechanisms that may affect caesium biogeochemistry on Arctic continental shelves. We investigated whether high biological productivity in portions of the Bering and Chukchi Seas is effective in removing dissolved radiocaesium from the water column, and whether biological production in overlying water affects total radiocaesium inventories in sediments. Based upon C/N ratios in the organic fraction of shallow sediments, we found no evidence that higher inventories or surface activities of radiocaesium are present in areas with higher deposition of particulate organic matter. Based upon stable carbon isotope ratios of organic matter in sediments, we found no evidence that terrestrial runoff contributes proportionally to higher surface activities, although terrestrial runoff may affect total inventories of the radionuclide. Radiocaesium content of surface sediments was significantly correlated with total organic carbon content of sediments and the proportion of sediments in the finest sediment fractions. Because high current flow can also be expected to influence distributions of those sedimentary parameters, we conclude that re-distribution of  相似文献   

3.
River inputs influence trophodynamic and biogeochemical processes of adjacent continental shelves. In order to provide new insights on the influence of continental inputs on the benthic trophic state and early diagenesis of sediment organic matter we collected surface sediments in the NW Adriatic Sea at three stations located at increasing distance from the Po River. Sediment samples were collected in four periods characterized by different river outflows and analysed for chloropigment content (chlorophyll-a and phaeopygments), protein, carbohydrate and lipid concentrations, prokaryote abundance and aminopeptidase activity. Sediments of the NW Adriatic Sea displayed high organic loads, tightly coupled with the outflow dynamics of the Po River. A major flooding event was responsible of an enhanced accumulation of organic material on the sea bottom. The resulting increased nutrient load in the sediment impaired organic matter degradation processes. The results of the present study suggest that the enhanced trophic state of marine coastal sediments subjected to riverine inputs are related not only to the increased nutrient inputs, but that they may be amplified by impaired degradation processes.  相似文献   

4.
Clam‐sediment accumulation factors for hexa‐, hepta‐ and octa‐chlorobiphenyls were estimated at an intertidal marsh that has been contaminated with Aroclor 1268. Accumulation factors for PCB congeners with K ow > 6.5 were in the range of 0.07–0.88, indicating that their uptake was hindered by steric factors, contamination levels, non‐equilibrium conditions and stronger affinity to sediment organic carbon. Biota‐sediment accumulation factors (BSAFs) were negatively correlated with log K ow of superhydrophobic PCB congeners. BSAFs estimated based on 2,3,7,8‐TCDD equivalents of PCBs were 2‐fold greater than those derived from total PCB concentrations.  相似文献   

5.
Microbial activity and accumulation of organic matter in the burrow of the thalassinidean mud shrimp, Upogebia major, were studied on a tidal flat along the northern coast of Tokyo Bay, Japan. The burrow of U. major is Y-shaped with an upper U-shaped part plus a lower I-shaped part. Its lower part can extend to a depth of 2 m. In the present study, we compare electron transport system activity (ETSA), bacterial abundance and organic matter content [total organic carbon (TOC), total nitrogen (TN) and chlorophyll a (chl. a)] of the burrow wall sediment with the tidal flat surface and non-burrow sediments. We also compared the U- and I-shaped part in terms of these parameters. ETSA in the burrow wall was higher than at the tidal flat surface in the warmer season, and was always higher than at surrounding non-burrow sediments. Bacterial abundance in the burrow wall was higher than at the tidal flat surface and surrounding sediment. TOC and TN contents in the burrow wall were two to three times higher than those at the tidal flat surface and non-burrow sediments, regardless of season. However, there was no significant difference in chl. a content between burrow wall and tidal flat surface. These results suggest that organic enrichment of the burrow wall is a result of organic matter particles such as phytodebris accumulation along the burrow wall. For all parameters of the burrow walls, no statistical differences were found between the two parts. Present results indicate that U. major actively transports the water containing suspended organic particles not only through the U-part but also into the deeper I-part. These indicate that burrow of the mud shrimp provides a dynamic environment for microbial community in tidal flat sediment.  相似文献   

6.
The isolation of biologically important low molecular weight organic acids from organically enriched sediments in Loch Eil, Scotland, was carried out by extraction of pore water with acidified ethyl acetate. High concentrations of acetic acid, up to 1.8 mg g-1 dry weight of sediment were found at Station E-24. Propionate, butyrate, valerate, lactate and traces of succinate were also found. Succinate was present in significant amounts, 42.2 g g-1 dry weight of sediment at Station E-70, which received a higher input of organic matter than E-24. Both propionate and succinate were absent from a control station in the Lynn of Lorne where the sediment was low in carbon compared with Loch Eil. In experimental tanks, acetate levels increased as the input of organic carbon (as cellulose) was increased up to a load level of 1.5 g m-2 day-1. Above this, acetate decreased and succinate appeared. Succinate was not detected in low-loaded tanks. Experiments with sieved mud showed a vertical distribution of the different acids with depth. Lactate and succinate reached highest concentration in the 0 to 3 cm layer, acetate at 3 to 6 cm and propionate at 6 to 9 cm. The results are discussed in relation to the role of these acids as food sources and as indicators of biochemical pathways taking place in sediments with different carbon input levels.  相似文献   

7.
8.
河北省衡水湖沉积物中汞的分布特征及生态风险   总被引:4,自引:0,他引:4  
衡水湖是华北平原上第一个国家级内陆淡水湖泊湿地类型的自然保护区,为了解衡水湖沉积物中汞的分布特征及生态风险,于2013年8月在衡水湖采集了5根柱状沉积物,对其中的总汞、甲基汞、孔隙水溶解态汞、有机质、pH以及含水率进行了分析。结果表明,衡水湖沉积物中总汞的平均含量为22.5 ng·g-1,低于全国及河北省表层土壤背景值。但表层沉积物汞含量明显高于底层,说明近年来的外源汞输入对湖泊汞负荷产生了一定影响,且靠近湖泊东部106国道的采样点汞含量明显高于湖泊中西部的采样点,暗示交通运输等人为活动是该湖泊的一个重要汞输入源。利用潜在生态危害指数法进行评估,显示汞的生态风险较低,说明现阶段衡水湖的沉积物汞浓度不会对生态环境产生不利影响。  相似文献   

9.
The biochemical composition of the sediment organic matter, and bacterial and meiofaunal dynamics, were monitored over an annual cycle in aPosidonia oceanica bed of the NW Mediterranean to test the response of the meiofauna assemblage to fluctuations in food availability. Primary production cycles of the seagrass and its epiphytes were responsible for relatively high (compared to other Mediterranean systems) standing stocks of organic carbon in sediments (from 1.98 to 6.16 mg Cg–1 sediment dry weight). The biopolymeric fraction of the organic matter (measured as lipids, carbohydrates, and proteins) accounted for only a small fraction (18%) of the total sedimentary organic carbon. About 25% of the biopolymeric fraction was of microphytobenthic origin. Sedimentary organic carbon was mostly refractory (56 to 84%) and probably largely not utilizable for benthic consumers. The biopolymeric fraction of the organic matter was characterized by high carbohydrate concentrations (from 0.27 to 5.31 mg g–1 sediment dry weight in the top 2 cm) and a very low protein content (from 0.07 to 0.80 mg g–1 sediment dry weight), which may be a limiting factor for heterotrophic metabolism in seagrass sediments. RNA and DNA concentrations of the Sediments varied significantly during the year. High RNA and DNA values occurred during the microphytobenthic bloom and in correspondence with peaks of bacterial abundance. Bacteria accounted for a small fraction of the total organic carbon (0.65%) and of the biopolymeric organic carbon (4.64%), whilst microphytobenthos accounted for 3.79% of total organic carbon and for 25.08% of the biopolymeric carbon. Bacterial abundance (from 0.8 to 5.8 × 108 g–1 sediment dry weight) responded significantly to seasonal changes of organic matter content and composition and was significantly correlated with carbohydrate concentrations. Bacteria might be, in the seagrass system, an important N storage for higher trophic levels as il accounted for 25% of the easily soluble protein. pool and contributed significantly to the total DNA pool (on average 12%). Total meiofaunal density ranged from 236 to 1858 ind. 10 cm–2 and was significantly related, with a time lag, to changes in bacterial standing stocks indicating that microbes might represent an important resource. Bacterial abundance and biomass were also significantly related to nematode abundance. These results indicate that bacteria may play a key role in the benthic trophic  相似文献   

10.
The aquatic sediments have special significance as habitats of species-rich biocoenoses and as the place where manifold transformation processes occur. Because of their high potential for accumulation of contaminants, sediments are particularly sensitive to anthropogenic impacts, which may disturb the natural state of sediments. In order to protect the aquatic life community, such impacts must be identified, assessed, and the chemical causes of toxic effects must be found. Since the end of the 1980s, the interest for a possibly comprehensive assessment of sediments has increased. This problem can be tackled only by an integrated approach, which combines the detection of toxicity under standardized laboratory conditions with chemical data and biologicalin situ studies into a holistic view. The information value of the results depends essentially on the selection of a diversity of test methods, which are able to indicate contaminant effects differentially. This paper presents results from a comprehensive test approach, which integrates standardized methods (DIN) with pore waters and eluates, as well as tests using the whole sediment. To cover a wider variety of contaminants in the sediment, solvent extracts and fractions thereof were also examined by different bioassays. Chemical analyses examined the structural parameters and identified priority contaminants. Non-target screening could detect a variety of further substances and substance classes. The model organisms of the bioassays responded very differentially and sometimes very intensively to the contaminants in the various investigation media. Especially in sediment extracts, some fractions, and consequently also substances and groups of substances, proved to be particularly toxic. It could be shown that the selected chemical, ecotoxicological, and biological study methods contribute to a holistic assessment. Further, possibly very sensitive bioassays and benthos-biological parameters should be examined aiming to optimize the very wide battery of tests.  相似文献   

11.
Coastal biogeochemical cycles are expected to be affected by global warming. By means of a mesocosm experiment, the effect of increased water temperature on the biogeochemical cycles of coastal sediments affected by organic-matter enrichment was tested, focusing on the carbon, sulfur, and iron cycles. Nereis diversicolor was used as a model species to simulate macrofaunal bioirrigation activity in natural sediments. Although bioirrigation rates of N. diversicolor were not temperature dependent, temperature did have a major effect on the sediment metabolism. Under organic-enrichment conditions, the increase in sediment metabolism was greater than expected and occurred through the enhancement of anaerobic metabolic pathway rates, mainly sulfate reduction. There was a twofold increase in sediment metabolism and the accumulation of reduced sulfur. The increase in the benthic metabolism was maintained by the supply of electron acceptors through bioirrigation and as a result of the availability of iron in the sediment. As long as the sediment buffering capacity toward sulfides is not surpassed, an increase in temperature might promote the recovery of organic-enriched sediments by decreasing the time for mineralization of excess organic matter.  相似文献   

12.
Abstract

Continuous monitoring of water quality of freshwater bodies may prevent outbreak of diseases and occurrence of hazards through employment of effective protection measures. The aim of the current investigation was to determine occurrence of water and sediment pollution in Tajan River North Iran which ultimately may be a threat to recreational beaches of Caspian Sea. Water samples were analyzed for various physicochemical parameters including pH, electrical conductivity (EC), total dissolved solids (TDS), bicarbonates, sulfates, cations, chlorides and heavy metals. The concentrations of zinc (Zn), cadmium (Cd), chromium (Cr) and lead (Pb) were determined using atomic absorption spectroscopy. Similarly, sediment samples were assessed for physicochemical characteristics including pH, EC, saturation percentage, organic matter, organic carbon, texture and cations. Overall, pH, EC, organic matter, and cation values were within acceptable limits according to USEPA water quality guidelines. However, phosphorus (P) concentration up to 5.6?mg/L was considered as “unsafe” which might result in undesirable eutrophication and increased accumulation of sediment organic content leading to excessive growth of algal species in riverine ecosystem. Heavy metal concentrations of Cd (0.08?ppm) and Pb (3?ppm) were above USEPA threshold limits which may consequently affect sustainability of Tajan River. The unacceptable levels of Cd, Pb and P may produce eutrophication of Caspian Sea coasts and damage the ecosystem.  相似文献   

13.
The binding capacity of Cd to the sediment particles determines the potential of Cd release from the sediments. An experiment was performed to evaluate the adsorption of Cd by contaminated sediments collected from three different locations in Hong Kong, i.e. Kwun Tong, North Point and Nam Tam Wan, having different degrees of pollution. Langmuir and Freundlich equations were used to evaluate the adsorption of Cd by the sediments. Adsorption isotherms obtained from the Freudlich and Langmuir equations were generally linear and the adsorption of Cd by the sediments was significantly correlated with the adsorption maximum and binding energy constant of the Langmuir equation, and equilibrium partition constant of the Freundlich equation. All sediments had a high Cd adsorption capacity and the highly organic contaminated sediments from Kwun Tong had the highest adsorption capacity of 24,272 mg kg‐1 at pH8. The adsorption of Cd for all sediments increased with a rise in pH of the equilibrium solution and the total organic carbon content of the sediments. Therefore, a change in the sediment chemical equilibrium is likely to reduce the binding capacity.  相似文献   

14.
POPs (persistent organic pollutants) associated with aquatic sediments can pose a risk to aquatic food chains, since they can be re-introduced to the food web. One major pathway is the bioaccumulation of POPs by endobenthic, sedimentingesting invertebrates (especially tubificid oligochaetes). These worms serve as food for benthivorous fish, which thereby ingest the sediment-borne chemicals and may accumulate contaminant concentrations far higher than from water exposure alone, and consequently transfer them to organisms of higher trophic levels. In order to evaluate such a potential biomagnification, a laboratory test was developed. It consisted of a two-step food chain including the sediment dwelling freshwater oligochaete Tubifex tubifex (Müller) and the three-spined stickleback (Gasterosteus aculeatus, Linné), a small teleost fish which often feeds primarily on benthic invertebrates. Artificial sediment and reconstituted water were used. To examine the influence of benthic prey on the bioaccumulation of a POP in the predator, fish were exposed to 14C-labelled hexachlorobenzene via spiked water, spiked sediment, pre-contaminated prey organisms, and to combinations of these exposure routes. Summarising the results of these experiments, it could be shown that the exposure to HCB via different routes resulted in a significantly higher accumulation in fish than an exposure to single pathways. It was concluded that the major uptake routes for fish were the overlying water and the food, whereas the contribution of spiked sediment itself was relatively small. HCB was biomagnified in the rested laboratory food chain. Therefore, concerning secondary poisoning, the environmental risk assessment of POPs like HCB should not be based on existing bioaccumulation tests alone, since they focus only on exposure via the water pathway. Instead, the influence of food and sediment as exposure routes should be considered as well, using comprehensive food chain modelling and/or laboratory studies.  相似文献   

15.
The bioaccumulation and bioavailability of polycyclic aromatic hydrocarbons (PAHs) were characterized in sediment and Paphia undulata (short-neck clam) from six mudflat areas in the west coasts of Peninsular Malaysia. The concentrations of total PAHs varied from 357.1 to 6257.1 and 179.9 ± 7.6 to 1657.5 ± 53.9 ng g ?1 dry weight in sediment and short-neck clam samples, respectively. PAHs can be classified as moderate to very high level of pollution in sediments and moderate to high level of pollution in short-neck clams. The diagnostic ratios of individual PAHs and principal component analysis indicate both petrogenic and pyrogenic sources with significant dominance of pyrogenic source. The first PAHs biota-sediment accumulation factors and relative biota-sediment accumulation factors data for short-neck clam were obtained in this study, indicating a preferential accumulation of lower molecular weight PAHs. Evaluation of PAH levels in sediments and short-neck clams indicates that short-neck clam could be introduced as a good biomonitor in mudflats. The results also demonstrated that under environmental conditions, the sedimentary load of hydrocarbons appears to be one of the factors controlling their bioavailability to biota.  相似文献   

16.
In order to explore the effect of different ecological zones and their above plants in the organic matter cycling of the whole tidal salt marsh, indicators such as total organic carbon (TOC), total nitrogen (TN), C/N ratio, δ13C and δ15N of surface, core sediments, and plants of tidal salt marshes in North Jiangsu Province are analyzed. Subsequently, distribution regularities of these measurement indicators are discussed, and the biogeochemistry processes between sediments and plants are also analyzed. Lastly, the organic matter sources of different ecologic zones in tidal salt marsh are evaluated, and the organic matter accumulations in different ecologic zones induced by their plants are also compared. These results indicate that TOC, TN, C/N ratio and δ13C showed obvious zonal distribution. The organic matter sources are dominated by marine input in the silt flat, artemisia schrenkiana flat, and the transition zone between silt and spartina alterniflora flat, and are controlled by terrigenous input in spartina alterniflora flat. Spartina alterniflora plays an important role in the accumulation of organic matter in the whole tidal salt marshes ecosystem. In the study area, the annually increased TOC, organic matter and TN in the spartina alterniflora, artemisia schrenkiana and reed flats reach 6,451, 12,043 and 536 t, respectively. The amount of TOC, organic matter and TN accumulated in the spartina alterniflora flat is more than that in other ecological zones, which shows that the spartina alterniflora flat exert a non-replaceable effect on the material cycle and exchange in the whole tidal salt marshes ecosystem.  相似文献   

17.
Marine regional Sediment Quality Guidelines (SQG) for polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH) from the Basque coast (SE Bay of Biscay) were determined, on the basis of sediment chemistry, toxicity and benthic community disturbance from analysis of 756 estuarine and coastal samples. The SQG were calculated using a percentile approach (based upon effect and non-effect data), using non-normalised and normalised concentration, by total organic carbon. However, normalisation by total organic carbon did not result in any improvement in accuracy compared with non-normalised values. Hence, this study proposes non-normalised SQG values for assessment of the chemical and physicochemical status in marine waters in the Basque Country, within the Water Framework Directive: 24.6–29 μg kg?1 for total PCBs; 164–285 μg kg?1 for low molecular weight PAH; 922–1537 μg kg?1 for high molecular weight PAH; and 1607–2617 μg kg?1 for total PAH.  相似文献   

18.
Selected persistent organic pollutants – polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides – were determined in sediments, soils, and crops from the Asopos River area, Greece. The river has been receiving industrial effluents for the last 40 years and has been recently found to be polluted with metals. Sediments were collected in the dry (May) and wet (February) season. Agricultural soils and cultivated crops were sampled from adjacent fields. Polychlorinated biphenyls were below the limit of detection in all samples. In one tomato and two soil samples, DDT and DDE were found. Polycyclic aromatic hydrocarbons were observed in 5% of the sediments and in concentrations ranging from 4 to 57 μg kg?1 dry weight, quite below sediment quality guidelines. Diagnostic ratios of polycyclic aromatic hydrocarbons indicated a strong influence of petrogenic point discharges. In the sediments, silicate minerals dominate over carbonates and the organic carbon content ranges from 0.4% to 3.5%, more than 70% being of natural origin. Compared to other rivers worldwide, the Asopos River was found to be not contaminated with persistent organic pollutants. Point loadings of organic pollutants were evident but continuous discharge is not occurring throughout the river basin.  相似文献   

19.
A simple three-step sequential extraction procedure was applied to study the speciation of heavy metals in sediment from Scheldt estuary, and their relationship to sediment grain size and organic matter content. The sedimentary metal content was fractionated into carbonate and exchangeable, metals bound to organic matter and residual fractions. Sedimentary total metal content was also determined using an industrial microwave (ETHOS 900) HF/HNO3 extraction method. The extracts were analysed for metals using inductively coupled plasma atomic emission spectrometry. The bioavailable fraction (exchangeable and metals bound to organic matter) comprised less than the other forms. Residue metals were the dominant form of metals in almost all studied sites. The average total metal content for the studied sites decreased in the order Fe>Cr>Cu>Co>Zn>Pb>Cd. Based on average values for the studied sites, the highest bioavailable metals in sediments were Cd (38%) from Westkapelle, Zn (17%) from Yerseke, Co (12%) from Domburg, Cr (9%) from Vlissingen, Fe and Pb each (2%) from Yerseke, and Cu (1%) from Domburg. Metal recovery was good, with<10% difference between the total metal recovered through the extractant steps and the total metal determined using HF/HNO3 extract.  相似文献   

20.
This work analysed the carbon sequestration potential in two species of mangroves (Rhizophora mucronata and Avicennia marina) along with their growth, biomass, sediment characteristics for four seasons of the year 2009–2010, in planted stands of different age (1–17.5 years) in the Vellar-Coleroon estuarine complex, India. The mangroves were recorded to store significant amount of biomass. Avicennia marina performed better to display 75 % higher rate of carbon sequestration than that in Rhizophora mucronata. This could be attributed to growth efficiency and high biomass production. For instance, Avicennia marina exhibited 2.7 fold higher girth, 24 % higher net canopy photosynthesis, 2 fold aboveground biomass (AGB), 40 % more belowground biomass (BGB) and 77.3 % higher total biomass, than R. mucronata did. Seasonally the rate of carbon sequestration was 7.3 fold higher in post-monsoon, 3.4 fold in monsoon, 73 % more in summer than that in pre-monsoon. The rate of carbon sequestration was positively correlated with age of planted site, tree height, tree diameter, net canopy photosynthesis, AGB, BGB, total biomass, carbon stock, growth efficiency, AGB/tree height tree girth, leaf area index, silt content (p?<?0.01). The carbon sequestration was negatively corrected with soil temperature and clay content (p?<?0.05). Mangroves were found to be a productive system and important sink of carbon in the tropical coastal zone, but increasing soil temperature due to global warming would have a negative impact on carbon sequestration potential of the mangroves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号