首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT There are several possible ways in which wastewater from municipalities may be reclaimed and reused so as to minimize the need for imported water in North Central Texas. The rationale for reuse is enhanced by the fact that new water quality requirements in the Trinity River system will necessitate a very high degree of treatment at municipal sewage plants, just for discharge to surface streams. The largest potential market for municipal effluent is the steam-electric power industry. Within the next decade the generating capacity for electric power in North Central Texas will have to be more than doubled to meet increasing demand. Adequate supplies of condenser cooling water for such expansion will be difficult to obtain and assure. New large power stations might advantageously be located adjacent to municipal wastewater treatment plants, to utilize effluent as make-up water for cooling towers. Experience elsewhere has shown that well-treated wastewater can be used for cooling tower make-up with a minimum of trouble, with a considerable saving in overall cost, and with conservation of pristine water for other uses.  相似文献   

2.
Power plant water consumption (evaporative water loss) for various river temperature standards is presented for existing and proposed power plants located along the Missouri and Upper Mississippi Rivers in the MAPP geographical area. Thermodynamic and economic models are combined to evaluate the cooling related water consumption at various river thermal standards. The existing thermal standards and a number of other hypothetical thermal regulations including the extreme cases of no thermal standards and no allowable heated discharges are examined to show the dependence on thermal standards of power production related water consumption. A critical appraisal of the cost of thermal standards in terms of water consumption is thereby possible so that subjective assessments of the standards can proceed with full knowledge of the tradeoffs involved between the “water costs” of power production and environmental enhancement.  相似文献   

3.
ABSTRACT: Expansion of the electrical generation system in the Pennsylvania-Jersey-Maryland power pool will impact, and be constrained by, inland water availability. Future interpretations of the Federal Water Pollution Control Act Amendments of 1972 regarding evaporative cooling towers for coastal power plants, offshore siting and energy centers, and the policies and public acceptability of low flow augmentation reservoirs are some of the issues examined in this paper using scenarios generated by the Brookhaven National Laboratory Regional Energy Facility Siting Model (REFS). REFS is a multicommodity, transshipment-location linear programming model used here to allocate power plants among counties in a power pool under a minimization of cost objectives. The solutions are sensitive to the water resources assumptions in the model. For the year 2000, the amount of low flow augmentation allowed in the region's river basins and whether off-shore siting becomes a reality are the two water resources related issues which most affect the scenarios. The results show that decisions regarding specific water problems can have region wide implications for water and nonwater related issues.  相似文献   

4.
ABSTRACT: A model consisting of closed water reuse and productive use of various types of wastes for energy generation is presented. The sewage after treatment would be used as the cooling water for power plants, and the condenser discharge therefrom be used as heating water for sludge digesters. The water is then purified for municipal water supply for continuous use. The advantages of this system are that water resources and energy are conserved while various types of wastes including waste heat are controlled. With a preliminary system analysis, it appears that the design for power plant based on the total heating value of wastes and digester capacity based on sewage sludge generation is feasible in terms of acquisition and full utilization of various types of wastes as generated in a single metropolitan area. The system as shown in this design is in balance among various factors such as the generation rate of municipal refuse, municipal sewage, waste heat in the condenser discharge, and raw sewage sludge.  相似文献   

5.
ABSTRACT: Problems of water quality and quantity are critical to development of the energy resources of the Western U. S. Based on a number of independent measures, the Upper Colorado River Basin will experience severe water availability problems in a few decades if projected energy and agricultural development occurs. Given the impending collision between the competing interests of various Western water users, water resource management and conservation deserves the utmost attention. Substantial opportunities for conservation exist in energy and agricultural development. Selection of both conversion and cooling technologies and careful siting decisions can sharply reduce the water requirements of energy development. Agricultural water conservation strategies include improving irrigation and cultivation practices, removing phreatophytes, removing marginal lands from production, and changing crop patterns. In order to accomplish significant conservation, however, there must be changes in those aspects of Western water law that remove conservation incentives from the water use system.  相似文献   

6.
Abstract: There are four known geothermal resource areas in the Imperial Valley that have a combined potential of over 4,000 megawatts of electrical energy for 25 years. Water resources available to support geothermal enerfy development are imprted Colorado River water, agricultural waste waters, Salton Sea water, and groundwater. In addtion, geothermal power plants can produce their own cooling water from steam condensate. Nevertheless, the relatively high water requirements of geothermal facilities along with a series of real and potential constraints may cause water supply dilemmas involving both the acquistion and use of cooling water. Important constraints are institutional policies, water supply costs, technical problems, and impacts upon the Salton Sea. These constranits and related dilemmas are examined in light of relevanty information on the valley's water resources, geothermal resources and energy technologies, cooling water requrements, and water supply options.  相似文献   

7.
In the United States, thermal power plant electrical generators (EGs) are large water diverters and consumptive users who need water for cooling. Retrofitting existing cooling systems to dry cooling and building new facilities with dry cooling can save water and reduce EG's vulnerability to drought. However, this can be an expensive source of water. We estimate that the cost of water saved by retrofitting cooling in existing EGs ranges from $0.04/m3 to $18/m3 depending on facility characteristics. Also water savings from building new EGs with dry cooling ranges in cost per unit water from $1.29/m3 to $2.24/m3. We compare costs with that for water development projects identified in the Texas State Water Plan. We find the water cost from converting to dry cooling is lower than many of the water development possibilities. We then estimate the impact of climate change on the cost of water saved, finding climate change can increase EG water use by up to 9.3% and lower the costs of water saved. Generally, it appears that water planners might consider cooling alterations as a cost competitive water development alternative whose cost would be further decreased by climate change.  相似文献   

8.
Abstract: Thermoelectric power generation is responsible for the largest annual volume of water withdrawals in the United States although it is only a distant third after irrigation and industrial sectors in consumptive use. The substantial water withdrawals by thermoelectric power plants can have significant impacts on local surface and ground water sources, especially in arid regions. However, there are few studies of the determinants of water use in thermoelectric generation. Analysis of thermoelectric water use data in existing steam thermoelectric power plants shows that there is wide variability in unitary thermoelectric water use (in cubic decimeters per 1 kWh) within and among different types of cooling systems. Multiple‐regression models of unit thermoelectric water use were developed to identify significant determinants of unit thermoelectric water use. The high variability of unit usage rates indicates that there is a significant potential for water conservation in existing thermoelectric power plants.  相似文献   

9.
ABSTRACT: The Phoenix metropolitan area has a unique combination of circumstances which makes it one of the prime areas in the Nation for waste water reuse. Overriding all of these conditions is the long-term inadequacy of the existing water supplies. The Salt River Valley has a ground water overdraft of about 700,000 acre feet per year. To help alleviate this situation, the Corps of Engineers in conjunction with the MAG 208 is looking at ways to reuse a projected 2020 waste water flow of 340,000 acre feet per year. Reuse options identified include ground water recharge, agricultural irrigation, turf irrigation, recreational lakes, fish and wildlife habitats, and industrial cooling. These look nice on paper but before they can be implemented, some hard questions have to be answered, such as: How acceptable are local treatment plants when 15 years ago there was a major push to eliminate local plants; is the Phoenix area ready for reuse in urban areas; what are people willing to pay for water; who benefits if a city goes to ground water recharge; how much agriculture will be left in the area by 2020? These and other questions must be resolved if reuse is to become a viable option in water resource planning in the Phoenix area. Summary. Large scale reuse of waste water conforms with the national goal of better resource management through recycling. The Phoenix metropolitan area has a unique combination of circumstances which makes it one of the prime areas in the nation for waste water reuse. Some of the most notable conditions are: the existence of a large and rapidly growing urban area which is in the process of planning for future waste water management systems; the existence of agricultural areas which are projected to be farmed well into the future, and the existence of constructed and planned major recreational systems such as Indian Bend Wash which can use recycled waste water; the existence of extensive depleted ground water aquifers; the need for a dependable source for the cooling of the Palo Verde Nuclear reactors; and finally, overriding all of this, the long-term inadequacy of the existing water supplies. Given this, one would expect to find total reuse within the Phoenix metropolitan area. Reuse is taking place with irrigation and nuclear power cooling to the west but there is no long term plan which looks at the Valley as a whole and considers waste water as part of the Valley's water resources. The Corps 208 plan is looking at waste water in this manner but initial analysis shows that although reuse is technically feasible there are many financial, social, institutional, and political questions still to be answered. These include: determining the value of existing diminishing water sources and what people are willing to pay for the next source of water; are people willing to identify priority uses of water for the area so that water of varying quality is put to its highest and best use; will the present institutional boundaries remain to create water-rich and water-poor areas; and will legislation be forthcoming to simplify the complex surface and ground water laws that presently exist? The Corps 208 study will not be able to answer these questions, but the goal at the moment is to identify feasible reuse systems along with decisions the public, owners, agencies, and politicians must make to select and implement them. If some sort of logical process is not developed and public awareness not increased, the chance for a long-term plan to utilize waste water as a major element in the Phoenix area water resource picture, may be missed.  相似文献   

10.
In most industrialized countries, environmental standards exist which prescribe the maximum allowable man-made increase in water temperature of a river. Together with flowrate and weather conditions, these standards determine the rate at which waste heat may be discharged into a river at any moment. Power generating stations with variable cooling systems can adjust their heat discharge into the river in compliance with environmental standards and by doing so exert an influence on power generation capacity. In this paper, a scheme is developed that allows a chain of power stations discharging into the same river to operate their cooling systems such that the output of total electricity is maximized and water temperature standards are accomodated. The optimum balance between stations is determined through dynamic programming. From the results of a simulation model using historical data, simple decision rules for day-to-day operation are abstracted. These rules are based solely on the river flow rates at each power station.  相似文献   

11.
ABSTRACT: Current water quality policies in California require disposal of saline blowdown waters from power plants in sealed evaporation ponds to avoid degradation of ground waters. This policy highlights the conflict between increased energy demands, increasing scarcity of water, and environmental priorities. Saline blowdown waters can be used for the irrigation of salt tolerant crops, albeit with some reduction in yields. The results of experiments intended to specify these yield reductions are reported. If such irrigation is carefully managed, the soil profile can be used to store residual salts and ground water degradation will be avoided, provided that irrigation ceases before the salts are leached to the ground water. An analysis of discharge below a carefully managed irrigation project shows that the downward movement of salts below the root zone is no worse than with conventional methods of disposal. Thus, irrigation reuse with blowdown water is shown to be a viable means of saline water disposal while maintaining existing standards of ground water quality protection. Further analysis demonstrates the economic feasibility of such irrigation reuse by showing that it is significantly less costly than the evaporation pond alternative.  相似文献   

12.
王茹静 《四川环境》2014,(1):119-123
大多数内陆核电厂将采用大型自然通风冷却塔作为其二次循环冷却方式,本文基于美国核管会推荐的SACTI程序,给出了该模型的基本原理和框架结构,并以江西彭泽核电厂为例,采用该程序预测分析了该核电厂大型自然通风冷却塔所造成的雾羽和太阳辐射损失的影响。并进一步研究了不同环境风速、相对湿度条件下对冷却塔造成的太阳辐射损失的影响。SACTI模型可以根据厂址逐时气象观测数据,较好地计算可见雾羽的长度、抬升高度和太阳辐射损失,其结果可以作为冷却塔环境影响评价的依据。  相似文献   

13.
ABSTRACT. The Heat Storage Well concept evolved at TEMPO in 1972. Technical, economic, institutional, and legal aspects of implementing the concept are being studied. Heat Storage Wells offer the possibility of conserving a substantial part of the heat energy now wasted in generating electricity and of reducing thermal pollution caused by the waste heat. Large thermal electric power plants would produce heat at useful temperatures such as 300–400°F. Combined electric- and heat-generating systems will require low-cost, low-loss storage of large amounts of hot water for periods of 90 to 180 days to serve both electric loads and seasonally-varying heat loads. Compared to conventional electricity-only systems, combined electricity-heat systems can save more than 20 percent in energy, reduce the cost of both electricity and heat, and eliminate the need for cooling water or towers. Possibilities for changes in legal and institutional practices are suggested, such as making resource-allocation decisions on the basis of energy units rather than dollars.  相似文献   

14.
ABSTRACT Cost functions are determined which will allow compensation to existing users of ground water when new users require rights. These functions are dependent on the additional energy cost to existing users. The costs produced by these functions can be significant when large quantities of water are required.  相似文献   

15.
ABSTRACT: Exports from the Sacramento‐San Joaquin Delta are an important source of water for Central Valley and Southern California users. The purpose of this paper is to estimate and analyze the effects increased exports to south of Delta users would have on the Sacramento Valley economy and water management if water were managed and reallocated for purely economic benefits, as if there were an ideal Sacramento Valley water market. Current Delta exports of 6,190 thousand acre‐feet per year were increased incrementally to maximum export pumping plant capacities. Initial increases in Delta exports did not increase regional water scarcity, but decreased surplus Delta flows. Further export increases raised agricultural scarcity. Urban users suffer increased scarcity only for exports exceeding 10,393 taf/yr. Expanding exports raises the economic value of expanding key facilities (such as Engle bright Lake and South Folsom Canal) and the opportunity costs of environmental requirements. The study illustrates the physical and economic capacity of the Sacramento Valley to further increase exports of water to drier parts of the state, even within significant environmental flow restrictions. More generally, the results illustrate the physical capacity for greater economic benefits and flexibility in water management within environmental constraints, given institutional capability to reoperate or reallocate water resources, as implied by water markets.  相似文献   

16.
ABSTRACT: The ground water in the Tucson basin is being drawn faster than it is replenished by nature. The water table is falling, giving rise to several conflicts between water users in the basin. At present, several lawsuits are in progress, including an action by the Papago Tribe against some of the major water users in the basin. Largely because of these difficulties, the State Legislature has established a commission to make proposals for the reform of Arizona's ground water law. The pattern of water use in the basin will undoubtedly be changed by the outcome of the present litigation and the coming reform of Arizona's ground water law. This paper describes how water use in the basin might be affected by changes in the availability of water and gives an account of the effects that these changes in water use could have on the region's economy. The paper concludes that the water problems of the Tucson basin will have little effect on the region at large and that these problems are simply a matter for the Indians and the other water users in the basin to sort out amongst themselves.  相似文献   

17.
ABSTRACT The generation of electric energy in steam-electric power plants is accompanied by the discharge of large quantities of waste heat into the environment. In most cases, this heat is released into natural bodies of water at temperatures relatively close to ambient. In certain locations, such as the Chesapeake Bay, discharges of waste heat may triple in the next decade. It is expected that past practices of thermal discharge, if continued into the future, will result in significant damages to other legitimate users of the water resource, both present and future. This paper reviews the economic causes of these potential damages, and describes the role of public policy as one of removing such causes through regulation incentive or intervention. Possible public policies are reviewed, including prohibition, standards, various types of dollar incentives such as taxes and subsidies, marketable effluent permits, and direct government investment. The innovative power plant siting program recently adopted in Maryland is also discussed. It is concluded that no statements can be made regarding the comparative efficiency or effectiveness of the various policies at the present state of knowledge. It is recommended that policy-makers adopt mixed strategies, preserving as many options as possible for dealing with similar problems in the future.  相似文献   

18.
Discharge of heated waste water may affect the entire aquatic ecosystem–the interrelated biological, chemical, physical system–and, if the temperature change is large, may destroy the capacity of the ecosystem to serve a variety of beneficial purposes. However, it is possible to discharge heated waste water in carefully controlled amounts without seriously degrading the aquatic ecosystem. There are four basic alternatives which are open to us with regard to the heated waste water problem which we may choose singly or in various combinations: (1) Placing all heated, waste water in streams, lakes, and oceans without regard to the effects. Thus considering the environmental damage as a necessary consequence of our increased power demand. (2) Using, but not abusing, existing ecosystems. This means regulating the heated waste water discharge to fit the receiving capacity of the ecosystem. (3) Finding alternative ways to dissipate or beneficially use waste heat. (4) Modifying ecosystems to fit the new temperature conditions. We are all dependent upon a life-support system which is partly industrial and partly ecological. Unfortunately, we have reached a stage of development where the non-expandable, ecological portion of our life-support system is endangered by the expanding industrial portion. Optimal function and full beneficial use of both portions of our life-support system will only be possible if a variety of disciplines and diverse points of view can cooperate and work together effectively. Since wastes in amounts that are acceptable taken one at a time may be lethal collectively, environmental management should be on a regional basis.  相似文献   

19.
This article presents an empirically based model, WiCTS ( Wi thdrawal and C onsumption for T hermoelectric S ystems), to estimate regional water withdrawals and consumption implied by any electricity generation portfolio. WiTCS uses water use rates, developed at the substate level, to predict water use by scaling the rates with predicted energy generation. The capability of WiCTS is demonstrated by assessing the impact of renewable electricity generation scenarios on water use in the United States (U.S.) through 2050. The energy generation scenarios are taken from the Renewable Energy Futures Study performed by the U.S. National Renewable Energy Laboratory of the U.S. Department of Energy. Results indicate reductions in water use are achieved under these renewable energy scenarios. The analysis further explores the impact of two modifications to the modeling framework. The first modification presumes geothermal and concentrated solar power generation technologies employ water‐intensive cooling systems vs. cooling technology that requires no water. The second modification presumes all water‐intensive cooling technologies use closed cycle cooling (as opposed to once‐through cooling) technologies by 2050. Results based on one of the renewable generation scenarios indicate water use increases by over 20% under the first modification, and water consumption increases by approximately 40% while water withdrawals decrease by over 85% under the second modification.  相似文献   

20.
刘圣 《四川环境》2012,31(2):57-60
发电厂闭式循环冷却水系统是采用钢筋混凝土结构自然通风冷却塔,其噪声污染治理是一个难题。本文以攀钢电厂双曲线自然通风冷却塔为例,介绍其噪声特性、控制措施及治理效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号