共查询到20条相似文献,搜索用时 0 毫秒
1.
Russell Schoof 《Journal of the American Water Resources Association》1980,16(4):697-701
ABSTRACT: The purpose of this literature review is to identify and quantify the effects of channelization and to examine the feasibility and acceptability of alternative methods of flood control. In the past 150 years, over 200,000 miles of stream channels have been modified. Channelization can affect the environment by draining wetland, cutting off oxbows and meanders, clearing floodplain hardwoods, lowering ground water levels, reducing ground water recharge from stream flow, and increasing erosion sedimentation, channel maintenance, and downstream flooding. Channelization reduces the size, number, and species diversity of fish in streams. In a wet climate, the fishery requires less than 10 years to fully recover. However, in the drier climates, the fishery may never fully recover. In general, channel modifications have performed as designed for flood abatement. The Arthur D. Little Study (1973) reported that direct benefits estimated during channelization planning have been conservative and that damage reduction has been impressive. Diking seems to be a viable alternative to channel dredging. Dikes minimize destruction of wetland and eliminate the need for removing vegetation from the existing stream banks. 相似文献
2.
Stanley A. Changnon 《Journal of the American Water Resources Association》1977,13(6):1165-1174
ABSTRACT: Weather modification, both planned by man and that accidentally produced by man, has been under intensive study in Illinois for ten years. Most everyone in Illinois and the Midwest is living in a climate that now is modified inadvertently from its natural state. State atmospheric scientists have tackled weather modification through a series of interrelated studies beginning with climatic studies (to establish the background), experimental design studies, experimental field studies to verify changes and their causes, and finally socio-economic and environmental studies to measure the impacts of weather modification. Studies at St. Louis show that the city acts as a trigger of summer clouds and rainfall leading to 4 to 6 summer days with 3 cm or more rain somewhere just east of the city. Power plants and jet aircraft also accidentally produce climatic changes. A focus on planned weather modification has been on the design of needed midwestern experiments in rainfall enhancement and hail suppression including the societal and environmental impacts. 相似文献
3.
Michael D. Harvey Chester C. Watson 《Journal of the American Water Resources Association》1986,22(3):359-368
ABSTRACT: Incised channels are those in which an imbalance between sediment transport capacity and sediment supply has led to degradation of their beds. This is a frequent response to stream channelization, changes in land use, or lowering of base level. If the degradation causes a critical bank-height threshold to be exceeded, which is dependent on the geotechnical properties of the bank materials, then bank failure and channel widening follow. Interdependent adjustments of channel slope and cross-sectional area occur until a new state of dynamic equilibrium with the imposed discharge and sediment load is attained. These geomorphic adjustments can be described and quantified by using location-for-time substitution and a model of channel evolution can be formulated. Three approaches to rehabilitation of the degraded channels are possible; geomorphic, engineering and rational. The rational approach, which integrates elements of both the engineering and geomorphic approaches, is based on the channel evolution model, and it generally involves control of grade, control of discharge, or a combination of both. 相似文献
4.
Robert L. Beschta 《Journal of the American Water Resources Association》1980,16(1):137-138
ABSTRACT: Two modifications to automated pumping samplers improve discrete sampling during high flow events in small mountain streams. One modification entails mounting the intake nozzle on a bent, free-swinging metal rod supported in midstream. This allows sampling in midstream yet prevents the buildup of floatable organic debris that otherwise would cause the intake to fail. On the lower end of the rod, dynamic forces exerted by the stream keep the intake submerged over diverse flow conditions. The second modification consists of a magnetic switching device that automatically activates the pumping sampler at any preset stage on the rising limb of a storm hydrograph. The pumping sampler then remains on to collect one sample per hour which allows field crews sufficient time to change bottles before the sampler fills its 28-bottle capacity. This device improves the capability to sample frequently at fixed intervals, yet with minimal maintenance between runoff events. It also ensures sample collection during the rising limb of the hydrograph when flow and sediment concentrations are rapidly changing. Both modifications have improved data collection during periods of storm runoff. 相似文献
5.
Stephen J. Gaffield Kenneth W. Potter Lizhu Wang 《Journal of the American Water Resources Association》2005,41(1):25-36
ABSTRACT: One of the biggest challenges in managing cold water streams in the Midwest is understanding how stream temperature is controlled by the complex interactions among meteorologic processes, channel geometry, and ground water inflow. Inflow of cold ground water, shade provided by riparian vegetation, and channel width are the most important factors controlling summer stream temperatures. A simple screening model was used to quantitatively evaluate the importance of these factors and guide management decisions. The model uses an analytical solution to the heat transport equation to predict steady‐state temperature throughout a stream reach. The model matches field data from four streams in southwestern Wisconsin quite well (typically within 1°C) and helps explain the observed warming and cooling trends along each stream reach. The distribution of ground water inflow throughout a stream reach has an important influence on stream temperature, and springs are especially effective at providing thermal refuge for fish. Although simple, this model provides insight into the importance of ground water and the impact different management strategies, such as planting trees to increase shade, may have on summer stream temperature. 相似文献
6.
Carl W. Prophet N. Leon Edwards 《Journal of the American Water Resources Association》1973,9(3):583-589
ABSTRACT The effect of feedlot runoff on the environmental quality of the Cottonwood River in east central Kansas was evaluated by analysis of community structure of benthic macroinvertebrates using the species diversity index, (d). The benthic fauna along the study reach was dominated by mayflies, caddisflies, midges, riffle beetles, and the pelecypod, Sphaerium. Sixty-five taxa were identified during the study; the benthic fauna was most abundant during the 1968–69 segment of the study. However, the mean 3 per station indicated the river was subject to moderate environmental stress, and 3's of those stations immediately downstream from feedlots were significantly lower than the 3 at the control station. There was a significant increase in d's during the 1970–71 segment of the study, following the closing of two feedlots. The results indicate periodic feedlot runoff had a continuing adverse affect on the environmental quality of the river, but recovery was rapid as the organic load on the river was reduced. 相似文献
7.
David R. De Walle Albert Rango 《Journal of the American Water Resources Association》1972,8(4):697-703
ABSTRACT. Stream channel characteristics were found to be useful indices to the hydrology of 27 small forested basins in the Northeast United States. Channel width alone explained 37 percent of the variation in mean annual runoff, whereas channel width combined with basin area explained 78 percent of the variation in mean annual runoff. This approached the percentage of variation in mean annual runoff explained by mean annual precipitation (83 percent). A simulated 15% increase in precipitation, such as might occur in a weather modification project, produced increases in channel width, depth, and channel area of 3, 4, and 8 percent, respectively. 相似文献
8.
James M. Sherwood 《Journal of the American Water Resources Association》1994,30(2):261-269
ABSTRACT: This paper describes methods for estimating volume-duration-frequency relations of urban streams in Ohio with drainage areas less than 6.5 square miles. The methods were developed to assist engineers in the design of hydraulic structures on urban streams for which temporary storage of water is an important element of the design criteria. Multiple-regression equations were developed for estimating maximum flood volumes of d-hour duration and T-year recurrence interval (dVT). Maximum annual flood-volume data for all combinations of six durations (1, 2, 4, 8, 16, and 32 hours) and six recurrence intervals (2, 5, 10, 25, 50, and 100 years) were analyzed. The significant explanatory variables in the resulting 36 volume-duration-frequency equations are drainage area, average annual precipitation, and basin-development factor. Standard errors of prediction for the 36 dVT equations range from ±28 percent to ±44 percent. 相似文献
9.
Andrew Simon 《Journal of the American Water Resources Association》1989,25(6):1177-1188
ABSTRACT: Approximately 400 million cubic feet of channel sediments have been delivered to the Mississippi River from the Obion-Forked Deer River system in the last 20 years. The discharge of sediment from these channelized networks in West Tennessee varies systematically with the stage of channel evolution. Variations in yields over time reflect the shifting dominance of fluvial and mass-wasting processes as the networks adjust to lower energy conditions. Maximum bed-material discharges occur during the initial phases of degradation (Stage III). In contrast, yields of suspended-sediment peak during the threshold stage (Stage 1V: large-scale mass wasting) as sediments are delivered from main-channel banks and tributary beds. Suspended-sediment yields then decrease as aggradation (Stage V) becomes the dominant trend in the main channels, but remains relatively high through restabiliza-tion (Stage VI) because of continued degradation and widening in the tributaries. Bed-material discharges decrease from the degradation stage (III) to Stage V, and increase again during restabiliza-tion (Stage VI) because secondary aggradation increases gradients and incipient meandering serves to rework bed sediments. This secondary maxima in bed-material discharge is analogous to those described previously as complex, or oscillatory, response. The trends of sediment production and transport described from these rejuvenated networks are in agreement with experimental and theoretical results of earlier investigations. 相似文献
10.
ABSTRACT: A computer program written in BASIC calculates net changes in stream channel cross-sections. Calculations are based on dividing the channel cross-section into discrete regions of scour and fill. Internal boundaries of these regions (along the x-axis of the cross-section) are determined by the location of vertical depth measurements taken at two distinct times. The right and left boundaries of the cross-section can be specified so that scour or fill can be calculated for any portion of the profile desired. 相似文献
11.
Peter P. Brussock Arthur V. Brown John C. Dixon 《Journal of the American Water Resources Association》1985,21(5):859-866
A system is proposed to classify running water habitats based on their channel form which can be considered in three different sedimentological settings: a cobble and boulder bed channel, a gravel bed channel, or a sand bed channel. Three physical factors (relief, lithology, and runoff) are selected as state factors that control all other interacting parameters associated with channel form. When these factors are integrated across the conterminous United States, seven distinct stream regions are evident, each representing a most probable succession of channel forms downstream from the headwaters to the mouth. Coupling these different channel profiles with typical biotic community structures usually associated with each of the channel types should result in considerable refinement of the applicability of the River Continuum Concept and other holistic ecosystem models by realizing the nonrandomness of the effects of geo-morphology on stream ecosystems. Thus, this regional perspective of streams should serve to make persons concerned with water resources more aware of the geographical considerations that affect their study areas. 相似文献
12.
Roger L. Kaesler Edwin E. Herricks 《Journal of the American Water Resources Association》1977,13(1):125-135
ABSTRACT: Brillouin's equation (H) for species diversity from information theory is to be preferred for the purposes of applied ecology over the equation of Shannon (H′) or the more commonly used approximate equation (H″). By its use, the difficult problem of delimiting the extent of the community being sampled in a stream survey can be avoided. Moreover, Brillouin's equation gives the exact diversity of the fully censused collection, whreas Shannon's diversity can only be approximated with a biased estimator. If we regard a sample as a message from the environment to the ecologist, Brillouin's equation is the proper one for computing its diversity. The product moment correlation coefficient between Brillouin's H for the total number of individuals from a group of samples and for randomly chosen subsets of 100 individuals from each sample was nearly as high as the correlation between H and H″ based on the total samples. This indicates that small sample sizes may give a useful diversity index. Replicated subsamples show that much smaller samples than are normally used can discriminate between communities from polluted and unpolluted environments. The use of smaller samples should reduce the cost of stream surveys. 相似文献
13.
ABSTRACT: The U.S. Geological Survey has collected flood data for small, natural streams at many sites throughout Georgia during the past 20 years. Flood-frequency relations were developed for these data using four methods: (1) observed (log-Pearson Type HI analysis) data, (2) rainfall-runoff model, (3) regional regression equations, and (4) map-model combination. The results of the latter three methods were compared to the analyses of the observed data in order to quantify the differences in the methods and determine if the differences are statistically significant. Comparison of regression-estimates with observed discharges for sites having 20 years (1966 to 1985) and 10 years (1976 to 1985) of record at different sites of annual peak record indicate that the regression-estimates are not significantly different from the observed data. Comparison of rainfall-runoff-model simulated estimates with observed discharges for sites having 10 years and 20 years of annual peak record indicated that the model-simulated estimates are significantly and not significantly different, respectively. The biasedness probably is due to a “loss of variance” in the averaging procedures used within the model and the short length of record as indicated in the 10 and 20 years of record. The comparison of map-model simulated estimates with observed discharges for sites having 20 years of annual-peak runoff indicate that the simulated estimates are not significantly different. Comparison of “improved” map-model simulated estimates with observed discharges for sites having 20 years of annual-peak runoff data indicate that the simulated estimates are different. The average adjustment factor suggested by Lichty and Liscum to calculate the “improved” map-model overestimates in Georgia by an average of 20 percent for three recurrence intervals analyzed. 相似文献
14.
Heidi Wienert George Roy C. Sidle 《Journal of the American Water Resources Association》1995,31(6):1051-1062
ABSTRACT: Geomorphic processes may partly determine channel geometry. Soil particle uplift during freezing and thawing cycles and bank sloughing during wetting and drying periods were observed. Soil properties and channel dimension were measured to determine the dominant processes controlling channel geometry in eight small (mean area 0.096 km2) drainages in Logan Canyon, Utah. Soil cohesion was low (plasticity index > 15) for all but one of the drainages sampled. Basin scale geomorphic variables were examined to determine if they control channel dimension. Bankfull width was highly correlated to channel length and valley length with r2 values of 0.85 and 0.84, respectively. A strong canonical correlation (0.64) showed that distance from the watershed divide, bank liquid limit, and bank sand content were effective predictor variables of bankfull width and depth. The interrelations between geomorphic and pedogenic processes were the strongest determinants of ephemeral channel dimension in this study. 相似文献
15.
Melanie B. Ruhiman Wade L. Nutter 《Journal of the American Water Resources Association》1999,35(2):277-290
ABSTRACT: Historic changes in stream channel morphology were investigated in the Georgia Piedmont to better understand the hydrologic processes and functioning of the region's riverine systems. USGS gaging station data and channel geomorphology data were collected from thirty study sites in the Upper Oconee River Basin for flood frequency analysis. Historic and modern (i.e., present-day) channel capacity discharge (i.e., overbank flow) was calculated using Manning's equation and historic channel cross-section records. The recurrence interval for overbank flow was estimated for each site from flood frequency data. Results indicate that channel expansion has occurred throughout the basin, especially in upper reaches. Recurrence intervals for modern overbank events were variable and generally high ranging from < 2 to > 500 years for first to third order streams. They were less variable and lower for fourth and fifth order streams, ranging from < 2 to 3 years. Potential depositional thresholds were identified that exemplify the complex response of sediment distribution patterns throughout the basin. Results indicate overbank flows occur less frequently now than they once did due to historic accelerated sedimentation and subsequent channel expansion. One application of these findings is that these basin processes are likely applicable across the region and may impact the hydrologic functioning of associated Piedmont riverine wetlands that depend on flooding regimes. 相似文献
16.
David W. Zimmer Roger W. Bachmann 《Journal of the American Water Resources Association》1978,14(4):868-883
ABSTRACT: Habitat diversity and invertebrate drift were studied in a group of natural and channelized tributaries of the upper Des Moines River during 1974 and 1975. Channelized streams in this region had lower sinuosity index values than natural channel segments. There were significant (P=O.05) positive correlations between channel sinuosity and the variability of water depth and current velocity. Invertebrate drift density, expressed as biomass and total numbers, also was correlated with channel sinuosity. Channelization has decreased habitat variability and invertebrate drift density in streams of the upper Des Moines River Basin and probably has reduced the quantity of water stored in streams during periods of low flow. 相似文献
17.
Michael F. Merigliano 《Journal of the American Water Resources Association》1997,33(6):1327-1336
ABSTRACT: The at-a-station hydraulic geometry of stream channels can serve as a predictor of alluvial stream channel behavior. This geometry is the empirical relations describing changes in water surface width, mean depth, and mean velocity with changing discharge. The exponent values are correlated with channel morphology and behavior such as scour and fill, flow resistance, bank resistance, and competence. Channel behavior and morphology are apparently related, but some causes for effects are uncertain. Several studies, using empirical and theoretical bases, are reviewed here to illustrate the relation between hydraulic geometry and channel behavior, but the relations are not always consistent. Hydraulic geometry variables are easy to measure and readily available, but they do not always reflect what may be more important ones such as turbulence, the velocity distribution profile, and distribution and cohesion of sediment particles. This paper illustrates some of these problems, provides some solutions, and addresses need for more work to better predict stream channel behavior from hydraulic geometry 相似文献
18.
Peter M. Allen Jeffrey C. Arnold Bruce W Byars 《Journal of the American Water Resources Association》1994,30(4):663-671
ABSTRACT: There is considerable potential for use of channel dimension data in planning-level models for resource and impact assessment. The channel dimension data is used to route flows and sediment through the basin. The cost of obtaining actual surveyed data for large watersheds is typically prohibitive. Predictive equations have been developed based on 674 stations from watersheds across the United States which encompass a wide variety of channel types and sizes. These equations were tested against an independent data set and found to be adequate for use in planning-level models. Future research is advocated which would include data from regions and stream types not included in this study. 相似文献
19.
William Whipple James M. DiLouie Theodore Pytlar 《Journal of the American Water Resources Association》1981,17(1):36-45
ABSTRACT: In urbanizing areas, the usual increase in flood flows also increases erosional capability of streams. In order to evaluate such tendencies quantitatively, 25 stream reaches were studied, and were classified as to whether erosion of the channel and banks was light, medium, or heavy. Analysis of characteristics indicated that (1) densely developed areas are correlated with greater erosion, (2) wide stream buffers of natural vegetation are correlated with lesser erosion, and (3) there is no definite correlation of erosion to slope or characteristics of soil. Erosional stream instability can be avoided by retention of storm water runoff, creating additional channel roughness or reducing channel slope during floods by drop structures, such as culverts, which restrict flow. Channel straightening and general bank protection should be minimized in such streams. Design of culverts should take such effects into consideration. 相似文献
20.
Mahendra K. Bansal 《Journal of the American Water Resources Association》1975,11(3):491-504
ABSTRACT: Deoxygenation process in which carbonaceous BOD is biochemically oxidized to reduced inorganic compounds is of great significance in the oxygen demand of stream waters. The BOD decay rate traditionally determined in a laboratory might not necessarily be the same as estimated for a natural stream. The variation in biochemical activity could occur due to differences in adsorption, dispersion, and biophysical processes taking place in the two environments. The first stage biochemical oxygen demand and benthal oxygen demand that occur simultaneously in a stream, have been considered together to calculate the gross rate of deoxygenation in polluted waters. The available data on deoxygenation measurements has been analyzed in this study to calculate the carbonaceous BOD rate constants in natural streams. The analysis indicates that the dimensionless deoxygenation parameter is a function of the ratio of the Reynolds number and Froude number of flow. The functional relationship between these two parameters essentially follows a straight line on a log-log plot. The applicability of the relationship does not depend upon the volume of the organic load, size, or location of the stream. 相似文献