首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
China is a key vulnerable region of climate change in the world. Climate warming and general increase in precipitation with strong temporal and spatial variations have happened in China during the past century. Such changes in climate associated with the human disturbances have influenced natural ecosystems of China, leading to the advanced plant phenology in spring, lengthened growing season of vegetation, modified composition and geographical pattern of vegetation, especially in ecotone and tree-lines, and the increases in vegetation cover, vegetation activity and net primary productivity. Increases in temperature, changes in precipitation regime and CO2 concentration enrichment will happen in the future in China according to climate model simulations. The projected climate scenarios (associated with land use changes again) will significantly influence Chinese ecosystems, resulting in a northward shift of all forests, disappearance of boreal forest from northeastern China, new tropical forests and woodlands move into the tropics, an eastward shift of grasslands (expansion) and deserts (shrinkage), a reduction in alpine vegetation and an increase in net primary productivity of most vegetation types. Ecosystems in northern and western parts of China are more vulnerable to climate changes than those in eastern China, while ecosystems in the east are more vulnerable to land use changes other than climate changes. Such assessment could be helpful to address the ultimate objective of the United Nations Framework Convention on Climate Change (UNFCCC Article 2).  相似文献   

2.
Conservation efforts in isolated archipelagos such as Hawaii often focus on habitat-based conservation and restoration efforts that benefit multiple species. Unfortunately, identifying locations where such efforts are safer from climatic shifts is still challenging. We aimed to provide a method to approximate these potential habitat shifts for similar data- and research-limited contexts. We modeled the relationship between climate and the potential distribution of native biomes across the Hawaiian archipelago to provide a first approximation of potential native biome shifts under end-of-century projected climate. Our correlative model circumvents the lack of data necessary for the parameterization of mechanistic vegetation models in isolated and data-poor islands. We identified locations consistently expected to remain the same in terms of the native biome compatibility by the end of the century with a robust evaluation of sources of uncertainty in our projections. Our results show that, despite large differences in climate projections considered, 35% of the areas considered are consistently projected to maintain their current compatibility to native biomes. By integrating our native biome compatibility projections with maps of current actual cover, we identified areas ideal for long-term habitat conservation and restoration. Our modeling approach can be used with relatively simple data; offers multiple forms of projection confidence estimates, model calibration, and variable selection routines; and is compatible with ensemble projections. This method is not only applicable to potential native cover, as done in this study, but to any set of vegetation classes that are related to environmental predictors available for modeling.  相似文献   

3.
We present climate change projections and apply indices of weather extremes for the Mediterranean island Cyprus using data from regional climate model (RCM) simulations driven by the IPCC A1B scenario within the ENSEMBLES project. Daily time-series of temperature and precipitation were used from six RCMs for a reference period 1976–2000 and for 2026–2050 (‘future‘) for representative locations, applying a performance selection among neighboring model grid-boxes. The annual average temperatures of the model ensemble have a ±1.5°C bias from the observations (negative for maximum and positive for minimum temperature), and the models underestimate annual precipitation totals by 4–17%. The climatological annual cycles for the observations fall within the 1σ range of the 6-model average, highlighting the strength of using multi-model output. We obtain reasonable agreement between models and observations for the temperature-related indices of extremes for the recent past, while the comparison is less good for the precipitation-related extremes. For the future, the RCM ensemble shows significant warming of 1°C in winter to 2°C in the summer for both maximum and minimum temperatures. Rainfall is projected to decrease by 2–8%, although this is not statistically significant. Our results indicate the shift of the mean climate to a warmer state, with a relatively strong increase in the warm extremes. The precipitation frequency is projected to decrease at the inland Nicosia and at the coastal Limassol, while the mountainous Saittas could experience more frequent 5–15 mm/day rainfall. In future, very hot days are expected to increase by more than 2 weeks/year and tropical nights by 1 month/year. The annual number of consecutive dry days shows a statistically significant increase (of 9 days) in Limassol. These projected changes of the Cyprus climate may adversely affect ecosystems and the economy of the island and emphasize the need for adaptation strategies.  相似文献   

4.
Understanding how future climate periods influence fire behaviour is important for organizing fire suppression strategy and management. The meteorological factors are the most critical parameters affecting fire behaviour in natural landscapes; hence, predicting climate change effects on fire behaviour could be an option for optimizing firefighting resource management. In this study, we assessed climate change impacts on fire behaviour parameters (rate of fire growth, rate of spread and fireline intensity) for a typical Mediterranean landscape of Greece. We applied the minimum travel time fire simulation algorithm by using the FlamMap software to characterize potential response of fire behaviour for three summer periods. The results consisted of simulated spatially explicit fire behaviour parameters of the present climate (2000) and three future summer periods of 2050, 2070 and 2100, under the A1B emissions scenario. Statistical significant differences in simulation outputs among the four examined periods were obtained by using the Tukey’s significance test. Statistical significant differences were mainly obtained for 2100 compared to the present climate due to the significant projected increase in the wind speed by the end of the century. The analysis and the conclusions of the study can be important inputs for fire suppression strategy and fire management (deployment of fire suppression resources, firefighter safety and exposure, transportation logistics) quantifying the effect that the expected future climate periods can have on fire suppression difficulty in Mediterranean landscapes.  相似文献   

5.
There are increasing attempts to define the measures of ‘dangerous anthropogenic inference with the climate system’ in context of Article 2 of the Framework Convention on Climate Change, due to its linkage to goals for stabilizing greenhouse gas concentrations. The criteria for identifying dangerous anthropogenic interference may be characterized in terms of the consequences of climate change. In this study, we use the water stress index (WSI) and agricultural net primary production (NPP) as indictors to assess where and when there might be dangerous effects arising from the projected climate changes for Chinese agricultural production. The results showed that based on HadCM3-based climate change scenarios, the region between the North China Plain and Northeast China Plain (34.25–47.75°N, 110.25–126.25°E) would be vulnerable to the projected climate change. The analyses on inter-annual variability showed that the agricultural water resources conditions would fluctuate through the period of 2001–2080 in the region under IPCC SRES A2 scenario, with the period of 2021–2040 as critical drought period. Agricultural NPP is projected to have a general increasing trend through the period of 2001–2080; however, it could decrease during the period of 2005–2035 in the region under the IPCC SRES A2 scenario, and during the period of 2025–2035 under IPCC SRES B2 scenario. Generally, while projected climate change could bring some potentially improved conditions for Chinese agriculture, it could also bring some critical adverse changes in water resources, which would affect the overall outcome. At this stage, while we have identified certain risks and established the general shape of the damage curve expressed as a function of global mean temperature increase, more works are needed to identify specific changes which could be dangerous for food security in China. Therefore, there is a need for the development of more integrated assessment models, which include social-economic, agricultural production and food trade modules, to help identify thresholds for impacts in further studies.  相似文献   

6.
植被NPP对气候变化的响应是全球变化与陆地生态系统碳循环研究的重要核心内容之一。利用CASA模型估算了2000~2015年江汉平原植被NPP,并利用线性回归与逐像元相关性分析方法定量研究了江汉平原植被NPP的时空变化特征及其与气候因素的相关性。结果表明:(1)16年来江汉平原植被NPP的年总量在25.43~29.76 TgC之间,呈波动增加趋势;(2)江汉平原NPP的空间分布格局具有明显的不均匀特征,形成一系列的高值中心和低值中心,符合“丘陵-平原-河流-城市”的衰减趋势;(3)江汉平原NPP与年降水量、年均温的相关系数分别为0.183 7和0.498 5;经显著性检验可知,江汉平原NPP的产量与年降水量相关性较弱,而与年均温则呈较强的正相关关系;(4)植被NPP与年降水量、年均温呈正相关的像元面积分别占总面积的69.19%和83.41%,主要分布在江汉平原腹部的农耕区域,说明江汉平原农耕区NPP的产量对年降水量与年均温的依赖性较强。  相似文献   

7.
云南西南地区自然资源丰富,近年来,随着社会经济的快速发展,橡胶、茶园和桉树等人工园林大规模种植主要占用了天然林和耕地,土地利用结构和空间布局发生了很大变化。为了探讨土地利用/覆被变化对植被净初级生产力(NPP)的影响,以人工园林大面积种植区西盟县为研究区,运用综合模型、CASA模型和MODIS产品(BIOME-BGC模型),对西盟县2000年、2005年、2010年和2015年各地类NPP的时间变化和空间分布特征进行分析。结果表明:(1)2000~2015年,CASA模型模拟的西盟县NPP呈先减少后增加的趋势,MODIS模型模拟的NPP值变化趋势与CASA模型一致,综合模型则呈现逐年增加的趋势;(2)西盟县NPP的空间分布形态从西至东均呈“低值-高值-低值-高值-低值”(“M”)变化,与西盟县水热资源的分布特征和土地利用/覆被变化有关,西盟县NPP空间变化主要集中于人工园林种植区;(3)3种模型中,CASA模型和MODIS产品(BIOME-BGC模型)比综合模型更适用于地形气候复杂多样的山区NPP的模拟计算,其中CASA模型空间精度更高。  相似文献   

8.
Forest fires and adaptation options in Europe   总被引:1,自引:0,他引:1  
This paper presents a quantitative assessment of adaptation options in the context of forest fires in Europe under projected climate change. A standalone fire model (SFM) based on a state-of-the-art large-scale forest fire modelling algorithm is used to explore fuel removal through prescribed burnings and improved fire suppression as adaptation options. The climate change projections are provided by three climate models reflecting the SRES A2 scenario. The SFM’s modelled burned areas for selected test countries in Europe show satisfying agreement with observed data coming from two different sources (European Forest Fire Information System and Global Fire Emissions Database). Our estimation of the potential increase in burned areas in Europe under “no adaptation” scenario is about 200 % by 2090 (compared with 2000–2008). The application of prescribed burnings has the potential to keep that increase below 50 %. Improvements in fire suppression might reduce this impact even further, e.g. boosting the probability of putting out a fire within a day by 10 % would result in about a 30 % decrease in annual burned areas. By taking more adaptation options into consideration, such as using agricultural fields as fire breaks, behavioural changes, and long-term options, burned areas can be potentially reduced further than projected in our analysis.  相似文献   

9.
Loss of forest cover is a likely consequence of climate change in many parts of the world. To test the vulnerability of eucalypt forests in Australia’s island state of Tasmania, we modelled tree canopy cover in the period 2070–2099 under a high-emission scenario using the current climate–canopy cover relationship in conjunction with output from a dynamically downscaled regional climate model. The current climate–canopy cover relationship was quantified using Random Forest modelling, and the future climate projections were provided by three dynamically downscaled general circulation model (GCM) simulations. Three GCMs were used to show a range of projections for the selected scenario. We also explored the sensitivity of key endemic and non-endemic Tasmanian eucalypts to climate change. All GCMs suggested that canopy cover should remain stable (proportional cover change <10 %) across ~70 % of the Tasmanian eucalypt forests. However, there were geographic areas where all models projected a decline in canopy cover due to increased summer temperatures and lower precipitation, and in addition, all models projected an increase in canopy cover in the coldest part of the state. The model projections differed substantially for other areas. Tasmanian endemic species appear vulnerable to climate change, but species that also occur on the mainland are likely to be less affected. Given these changes, restoration and carbon sequestration plantings must consider the species and provenances most suitable for future, rather than present, climates.  相似文献   

10.
青藏高原NPP时空演变格局及其驱动机制分析   总被引:3,自引:0,他引:3  
青藏高原植被生态系统对全球变化的响应较为敏感。该研究引入重心模型等方法分析和探讨了2000~2015年青藏高原NPP时空变化格局及其驱动机理,并定量区分了NPP变化过程中气候变化和人类活动的相对作用。结果发现:(1)2000~2015年,青藏高原NPP年均值总体上呈现从东南向西北递减的趋势。在年际变化方面,近16年青藏高原不同生态子区的NPP均呈现不同程度的增加趋势。(2)近16年青藏高原NPP重心总体向西南方向移动,表明西南部NPP在增量和增速上大于东北部。(3)NPP与降水显著相关的区域主要位于青藏高原中部、青藏高原东南部及雅鲁藏布江流域中下游,而NPP与气温显著相关的区域主要位于藏南地区、横断山区北部、青藏高原中部和北部。(4)气候变化和人类活动在青藏高原NPP变化过程中的相对作用存在显著的时空差异性,在空间上呈现"四线-五区"的格局。研究成果可为揭示青藏高原区域生态系统对全球变化的响应机制提供理论和方法支撑。  相似文献   

11.
Land capability classification systems define and communicate biophysical limitations on land use, including climate, soils and topography. They can therefore provide an accessible format for both scientists and decision-makers to share knowledge on climate change impacts and adaptation. Underlying such classifications are complex interactions that require dynamic spatial analysis, particularly between soil and climate. These relationships are investigated using a case study on drought risk for agriculture in Scotland, which is currently considered less significant than wetness-related issues. The impact of drought risk is assessed using an established empirical system for land capability linking indicator crops with water availability. This procedure is facilitated by spatial interpolation of climate and soil profile data to provide soil moisture deficits and plant available water on a regular 1-km grid. To evaluate potential impacts of future climate change, land capability classes are estimated using both large-scale ensemble (multi-simulation) data from the HadRM3 regional climate model and local-scale weather generator data (UKCP09) derived from multiple climate models. Results for the case study suggest that drought risk is likely to have a much more significant influence on land use in the future. This could potentially act to restrict the range of crops grown and hence reduce land capability in some areas unless strategic-level adaptation measures are developed that also integrate land use systems and water resources with the wider environment.  相似文献   

12.
The Welsh Government is committed to reduce greenhouse gas (GHG) emissions from agricultural systems and combat the effects of future climate change. In this study, the ECOSSE model was applied spatially to estimate GHG and soil organic carbon (SOC) fluxes from three major land uses (grass, arable and forest) in Wales. The aims of the simulations were: (1) to estimate the annual net GHG balance for Wales; (2) to investigate the efficiency of the reduced nitrogen (N) fertilizer goal of the sustainable land management scheme (Glastir), through which the Welsh Government offers financial support to farmers and land managers on GHG flux reduction; and (3) to investigate the effects of future climate change on the emissions of GHG and plant net primary production (NPP). Three climate scenarios were studied: baseline (1961–1990) and low and high emission climate scenarios (2015–2050). Results reveal that grassland and cropland are the major nitrous oxide (N2O) emitters and consequently emit more GHG to the atmosphere than forests. The overall average simulated annual net GHG balance for Wales under baseline climate (1961–1990) is equivalent to 0.2 t CO2e ha?1 y?1 which gives an estimate of total annual net flux for Wales of 0.34 Mt CO2e y?1. Reducing N fertilizer by 20 and 40 % could reduce annual net GHG fluxes by 7 and 25 %, respectively. If the current N fertilizer application rate continues, predicted climate change by the year 2050 would not significantly affect GHG emissions or NPP from soils in Wales.  相似文献   

13.
基于遥感的上海崇明东滩湿地典型植被净初级生产力估算   总被引:3,自引:1,他引:2  
湿地是具有丰富的生物多样性和较高生产力的生态系统,在全球碳循环中占有重要地位。湿地植被净初级生产力(NPP)是衡量湿地生态系统健康状况的重要指标。以上海崇明东滩湿地3种典型植被--芦苇、海三棱藨草、互花米草为研究对象,结合实地调查、实验室测定和遥感技术进行湿地植被净初级生产力估算研究。首先,设置湿地3种典型植被样方,测量植被鲜重、高度、密度、盖度和叶面积指数(LAI)等反映植被生物学特性的特征参数,按不同植被类型分别建立基于LAI的样方NPP回归模型;其次,利用一景相近时相的SPOT5影像,经过几何纠正和辐射定标后,采用面向对象分类方法对影像分类,同时,计算出能较好地反映植被特征和消除土壤背景影响的修正土壤调节植被指数(MSAVI),建立了基于MSAVI的3种典型植被LAI遥感估测模型;最后,分别根据样方3种典型植被的NPP估测模型以及LAI遥感估测模型,进行尺度化转换,估算出崇明东滩湿地典型植被净初级生产力。模型简单可行,精度较高,可为快速定量评估湿地植被碳贡献及碳储量提供依据  相似文献   

14.
Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future.  相似文献   

15.
We estimated global future industrial water withdrawal (IWW) by considering socioeconomic driving forces, climate mitigation, and technological improvements, and by using the output of the Asia–Pacific Integrated Model/Computable General Equilibrium (AIM/CGE) model. We carried out this estimation in three steps. First, we developed a sector- and region-specific regression model for IWW. The model utilized and analyzed cross-country panel data using historical statistics of IWW for 10 sectors and 42 countries. Second, we estimated historical IWW by applying a regression model. Third, we projected future IWW from the output of AIM/CGE. For future projections, we considered and included multiple socioeconomic assumptions, namely different shared socioeconomic pathways (SSPs) with and without climate mitigation policy. In all of the baseline scenarios, IWW was projected to increase throughout the twenty-first century, but growth through the latter half of the century is likely to be modest mainly due to the effects of decreased water use intensity. The projections for global total IWW ranged from 461 to 1,560 km3/year in 2050 and from 196 to 1,463 km3/year in 2100. The effects of climate mitigation on IWW were both negative and positive, depending on the SSPs. We attributed differences among scenarios to the balance between the choices of carbon capture and storage (CCS) and renewable energy. A smaller share of CCS was accompanied by a larger share of non-thermal renewable energy, which requires a smaller amount of water withdrawal per unit of energy production. Renewable energy is, therefore, less water intensive than thermal power with CCS with regard to decarbonizing the power system.  相似文献   

16.
Economic values of water for the main Public Irrigation Schemes in the sub-middle region of the São Francisco River Basin, in northeastern Brazil, are determined in this study using an integration of a global agro-economic land and water use (MAgPIE) with a local economic model (Positive Mathematical Programming). As in the latter, the water values depend on the crops grown, and as Brazilian agriculture is strongly influenced by the global market, we used a regionalized version of the global model adapted to the region in order to simulate the crop land use, which is in turn determined by changes in global demand, trade barriers, and climate. The allocation of sugarcane and fruit crops projected with climate change by the global model, showed an impact on the average yields and on the water costs in the main schemes resulting in changes in the water values locally. The economic values for all schemes in the baseline year were higher than the water prices established for agricultural use in the basin. In the future, these water values will be higher in all the schemes. The highest water values currently and in the future were identified in municipalities with a significant proportion of area growing irrigated sugarcane. Being aware of current water values of each user in a baseline year and in a projected future under global climate and socioeconomic changes, decision makers should improve water allocation policies at local scale, in order to avoid conflicts and unsustainable development in the future.  相似文献   

17.
Projected future climate change will alter carbon storage in forests, which is of pivotal importance for the national carbon balance of most countries. Yet, national-scale assessments are largely lacking. We evaluated climate impacts on vegetation and soil carbon storage for Swiss forests using a dynamic vegetation model. We considered three novel climate scenarios, each featuring a quantification of the inherent uncertainty of the underlying climate models. We evaluated which regions of Switzerland would benefit or lose in terms of carbon storage under different climates, and which abiotic factors determine these patterns. The simulation results showed that the prospective carbon storage ability of forests depends on the current climate, the severity of the change, and the time required for new species to establish. Regions already prone to drought and heat waves under current climate will likely experience a decrease in carbon stocks under prospective ‘extreme’ climate change, while carbon storage in forests close to the upper treeline will increase markedly. Interestingly, when climate change is severe, species shifts can result in increases in carbon stocks, but when there is only slight climate change, climate conditions may reduce growth of extant species while not allowing for species shifts, thus leading to decreases in carbon stocks.  相似文献   

18.
24个CMIP5模式对长江流域模拟能力评估   总被引:2,自引:0,他引:2  
根据1961~2005年长江流域气象站点的实测月降水量和气温数据,采用第5期全球耦合模式比较计划CMIP5(the Fifth Phase of Coupled Model Intercomparison Project)中24个全球气候模式(GCM)的模拟结果,通过计算模拟变量和观测变量平均值的相对误差、归一化的均方根误差、时间和空间相关系数,采用M-K趋势分析方法,分别选用在长江流域模拟气温和降水较好的5个模式进行集合平均,从时间的演变规律和空间的分布特征两方面,检验该模式集合对长江流域模拟气温和降水的能力。研究结果表明:各个模式模拟气温的能力要明显好于模拟降水的能力,但模拟气温较好的模式模拟降水的能力并不一定突出;模式集合的结果表明:在时间尺度上,模式集合平均结果与观测值拟合程度较好,且模式集合的结果振荡幅度较观测值小;在空间尺度上,模式集合的空间分布趋势与观测值大致相同,说明采用的模式集合结果用于预估未来长江流域降水的时空分布特征和演变规律是可行的。  相似文献   

19.
Trends of summer precipitation and summer temperature and their influence on trends in summer drought and area burned in British Columbia (BC) were investigated for the period 1920–2000. The complexity imposed by topography was taken into account by incorporating high spatial resolution climate and fire data. Considerable regional variation in trends and in climate–fire relationships was observed. A weak but significant increase in summer temperature was detected in northeastern and coastal BC, whereas summer precipitation increased significantly in all regions—by up to 45.9 %. A significant decrease in province-wide area burned and at the level of sub-units was strongly related to increasing precipitation, more so than to changing temperature or drought severity. A stronger dependence of area burned on precipitation, a variable difficult to predict, implies that projected changes in future area burned in this region may yield higher uncertainties than in regions where temperature is predominantly the limiting factor for fire activity. We argue that analyses of fire–climate relationships must be undertaken at a sufficiently high resolution such that spatial variability in limiting factors on area burned like precipitation, temperature, and drought is captured within units.  相似文献   

20.
Climate change impact on countrywide water balance in Bolivia   总被引:1,自引:0,他引:1  
There is increasing concern about the ongoing reduction in water supplies in the tropical Andes due to climate change effects such as glacier/snow melting resulting from rising air temperatures. In addition, extreme events and population growth are already directly affecting life and water renewability in the country. A countrywide integrated national plan for improving basin-scale water management in Bolivia is needed to assure water availability for agriculture, industry, mining, and human consumption. This study aims to provide a modeling tool to assess Bolivia’s past, current, and future water availability and identify basins at risk of water deficits. The Soil Water Assessment Tool was used to simulate the monthly water balance from 1997 to 2008, as well as the water balance projected to 2050 for the entire country. It considers possible changes in air temperatures and precipitation proposed by 17 Global Circulation Models as well as carbon dioxide projections derived from the Special Report Emission Scenario. Overall, model results were close to satisfactory compared to observations, with some exceptions due to lack of information for expanding the timeline and improving calibration. Based on the calculation of three hydrologic indicators, the study identifies basins that would be the most susceptible to water deficits for a baseline from 1997 to 2008, and in the event of the projected climate change, to 2050.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号