首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
A comparative study on Fe/Al, Fe/Al/Cu, and Fe/Al/Ni catalysts in high-temperature water–gas shift reaction (HT–WGS) using simulated waste-derived synthesis gas has been carried out. The metal oxide (Cu and Ni) and aluminum incorporated Fe catalysts were designed to get highly active HT–WGS catalysts. Despite the high CO concentration in the simulated waste-derived synthesis gas, Fe/Al/Cu catalyst exhibited the highest CO conversion (84 %) and 100 % selectivity to CO2 at a very high gas hourly space velocity (GHSV) of 40,057 h?1. The outstanding catalytic performance is mainly due to easier reducibility, the synergy effect of Cu and Al, and the stability of the magnetite.  相似文献   

2.
The thermal cracking at 400?°C of pure polyolefins—low density polyethylene (LDPE), high density polyethylene (HDPE) and polypropylene (PP) and a standard polyolefin mixture (46?% LDPE?+?27?% HDPE?+?28?% PP)—was studied together with the catalytic hydroreforming of the obtained oils over Ni/h-beta at 310?°C under 20?bar of hydrogen. The oils obtained after the thermal cracking of PP contain the highest amount of gasoline (58?%), while those coming from HDPE the lowest (39?%). The bromine index of the oils was very high, ranging from 54.1 (LDPE) to 83.8 (PP), indicating a high olefinic content of the oils. Additionally, the thermal cracking of the mixture indicates the occurrence of a synergestic effect among plastics, with transfer of methyl groups from PP to polyethylenes. Ni/h-beta (Si/Al?=?25; Ni content?=?6.2?wt%) catalyst was used in the hydroreforming since it contains a bimodal pore size distribution (0.6/3.1?nm), which improves accessibility of the oil molecules to the catalytic sites. After the hydroreforming and regardless of the plastics used, the share of lighter products (gasoline and gases) increases, reaching a remarkable 68?% of gasolines with the oils coming from PP. Regardless of the starting feed, the amount of useful fuels (gasoline?+?light diesel) was within 80–85?%. Additionally, the oils were successfully hydrogenated since the bromine indexes dropped below 7, indicating that more than 90?% of the starting olefins were saturated. The usage of catalysts increased the amount of aromatics in the obtained oils within 13–20?%, depending on the starting plastic. Likewise, the isoparaffin content of the gasolines was within 35–40?%, except for PP, where it was enhanced to 62?%. However, the research octane number (RON) of the gasolines from LDPE and PP and the cetane indexes of the diesel from all the plastics were promising for their application as fuels.  相似文献   

3.
In this study, a very promising way of treating and recycling spent nickel catalysts of fertilizer plants in Vietnam was proposed. Firstly, nickel was recovered from spent catalyst using HNO3—leaching process. Results show that nickel recovery of over 90% with a purity of over 90% can be achieved with HNO3 2.1–2.5 M at 100?°C in 75 min. The residue after leaching is not considered as a hazardous waste according to the Vietnamese regulations. Then, the leachate solution was used as a precursor to prepare a model catalyst for exhaust gas (CO, HC, NOx) treatment. In comparison with the catalyst prepared from the commercial nickel nitrate solution, the catalyst synthesized from recovered nickel exhibits similar properties and activities. The influence of Ni loading of Ni/alumina catalyst as well as the modification of active phase by some metals addition (Mn, Ba, Ce) was also investigated. It is feasible to modify active phase by transition metals such as Mn, Ba, and Ce for complete oxidation of CO and HC at 270?°C and a reduction of NOx below 350?°C at high volumetric flow condition (GHSV?=?110.000 h?1).  相似文献   

4.
Fuel production from plastics is a promising way to reduce landfilling rates while obtaining valuable products. The usage of Ni-supported hierarchical Beta zeolite (h-Beta) for the hydroreforming of the oils coming from LDPE thermal cracking has proved to produce high selectivities to gasoline and diesel fuels (>80%). In the present work, the effect of the Ni loading on Ni/h-Beta is investigated in the hydroreforming of the oils form LDPE thermal cracking. h-Beta samples were impregnated with Ni nitrate, calcined and reduced in H2 up to 550 °C to achieve different Ni contents: 1.5%, 4%, 7% and 10%. Larger and more easily reducible metal particles were obtained on Ni 7%/h-Beta and Ni 10%/h-Beta. Hydroreforming tests were carried out in autoclave reactor at 310 °C, under 20 bar H2, for 45 min. Ni content progressively increased the amount of gases at the expenses of diesel fractions, while gasoline remained approximately constant about 52–54%. Maximum selectivity to automotive fuels (~81%) was obtained with Ni 7%/h-Beta. Ni loading also enhanced olefins saturation up to Ni 7%/h-Beta. High cetane indices (71–86) and octane numbers (89–91) were obtained over all the catalysts. Regarding the different studied Ni contents, Ni 7%/h-Beta constitutes a rather promising catalyst for obtaining high quality fuels from LDPE thermal cracking oils.  相似文献   

5.
The anaerobic co-digestion of biomass waste, a promising process of reusing resources, is capable of improving methane production. However, the characteristics and composition of fermenting raw material negatively influence the efficiency of methane production. Optimization experiments were systematically performed in this study through anaerobic co-digestion with urea-ammoniated rice straw (UARS) and food waste (FW) as co-substrates. Anaerobic co-digestion of UARS and FW in biogas production under mesophilic conditions (35 °C) was investigated in a 1 L enclosed triangular flask with a total organic load of 6 g volatile solids (VS)/L. The optimal mixing ratio of UARS to FW was close to 1:3, and the methane yield increasing by 8.83% compared with the sole substrate. Furthermore, based on the optimization ratio, supplementation of cobalt (Co) and nickel (Ni) on co-digestion were significantly superior to that of a single element. Additionally, kinetic analysis indicated that trace element remarkably facilitated the reaction rate of co-digestion. Noteworthy, the addition of Co, Ni, and the combination of Co and Ni achieved very significant (p < 0.01) improvement of 6.45, 8.36, and 13.65%. Meanwhile, Ni was substantially promoted the removal rate of VS, enhanced the operational stability of co-digestion and increased the methane content significantly.  相似文献   

6.
The catalytic upgrading pyrolysis of pine sawdust was performed at 500 °C with various metal oxides to improve the quality of the bio-oil. The aim of this study was to investigate the potential of the metal oxides instead of traditional zeolites for catalytic upgrading pyrolysis with the analysis of Gas Chromatograph/Mass Spectrometer. In this study, the used catalysts were Calcium-oxide, Magnesium oxide, Titanium dioxide, and Zeolite (Si/Al?=?80). The influence of catalysts on products yields and compositions were investigated. Most metal oxides can enhance the bio-gas with the bio-oil yields decreased. The metal oxides led to a decrease of Acids, Aldehydes, Ketones and an increase of Furfural, Cresols, Catechols in Furans and Phenolics. Among the catalysts, the MgO catalysts was the most effective to convert the high molecular into lights ones (6.65% Cresols) with yield of 20.48% for Furfural. The deoxygenation reaction in bio-oil was suggested to convert oxygenated compounds into the low molecular weight of the materials (6.39% Guaiacols). Thus, the used metal oxides can improve the quality of bio-oil by decreasing undesirable compounds as well as increasing the desirable compounds with low oxygen contents via deoxygenation reaction.  相似文献   

7.
In this paper, emission and distribution behavior of six heavy metals (As, Cd, Cr, Ni, Pb, and Hg), particulate matter and mass distribution of mercury within the different streams of a fluidized bed sewage sludge incinerator are presented. At the inlet of air pollution control devices (APCDs); Cd, Cr, Ni and Pb were mainly enriched in coarse particles; comparatively As content was higher in fine particles (<PM2.5). The concentration of heavy metals in total particulate matter and PM2.5, at the inlet of APCDs, were in the order of Cr > Ni > Pb > As > Cd. Mercury was almost always distributed in flue gas. Metals, other than mercury, were efficiently removed in APCDs and their concentrations in bottom ash, with fly ash being higher, whereas for that in wastewater, then waste sand was lesser. Overall mercury removal efficiency of APCDs was 98.6 %. More than 83.3 % of mercury was speciated into oxidized form at the inlet of APCDs, attributed by higher chlorine content in sludge. Mercury was mainly distributed in wastewater (78.4 %), wastewater from a spray dry reactor (16.8 %), fly ash in a hopper (3.4 %) and flue gas (1.4 %). This result is one of the first for data to be obtained; more experiments are required to control emission from such sources.  相似文献   

8.
The possibility of transforming waste plastics into valuable hydrocarbons via catalytic cracking and reforming is attracting increasing interest. Pyrolysis coupled with Gas Chromatographic separation and Mass Spectrometry detection (Py-GC/MS) has been used in this work to study the product selectivity of various catalysts in the conversion of pure and residual polyethylene samples into hydrocarbon products. Five acid solids of comparable aluminium contents but different textural and acid properties were tested as catalysts, including three zeolites (standard ZSM-5, nanocrystalline n-ZSM-5 and Beta) and two mesostructured solids (Al-MCM-41 and Al-SBA-15). Thermal cracking of the pure and residual polymers generated a similar range of products to each other, with a high proportion of linear paraffins and olefins of varying lengths. The presence of zeolitic materials resulted in complete elimination of heavy linear products, an increase in the light hydrocarbon fraction and a marked selectivity towards the formation of single-ring aromatic species, particularly benzene, toluene and xylene. Aromatic formation was particularly notable with the small crystal size n-ZSM-5 (aromatic selectivity up to 53.9%) and less marked in the case of standard ZSM-5 (up to 36.4%) and Beta zeolite (up to 35.0%). Mesostructured catalysts like Al-MCM-41 and Al-SBA-15 favoured the production of light C2–C5 hydrocarbons (up to 57.9%) while the formation of aromatic products was significantly lower than with zeolitic materials. The paper examines the extent and the causes for this product selectivity and discusses its connection with the acid and textural properties of each catalyst. It was also observed that, under the experimental conditions employed, the products generated were not significantly affected by the nature and origin of the polymers employed.  相似文献   

9.
Our aim was to clarify the chemical bonding type and stability of heavy metals in industrial waste slag (IWS) by using Fourier transform infrared (FT-IR) spectroscopy. The chemical composition of the IWS sample used in this study was an Al/Si ratio of 0.50 with Fe, Pb, and other minor heavy metals present. The IR peak position of the Si-OSi( M) band (M: Al, Pb, or Fe) was lower for IWS (971 cm−1) than for synthetic Si-Al glass with an Al/Si ratio of 0.5 (1029 cm−1). This implies the formation of covalent Si-O-Pb and Si-O-Fe bonds in the IWS, which caused a shift in the peak position toward a lower wavenumber. FT-IR spectra of synthetic Si-Al-Pb and Si-Al-Fe glasses with various Pb/Si and Fe/Si ratios with a constant Al/Si ratio of 0.5 showed that the peak position of the Si-O-Si(M) band continuously shifted toward lower wavenumbers with increasing Pb/Si and Fe/Si ratios. This suggests that covalent Si-O-Pb and Si-O-Fe bonds are formed in IWS. The comparison of peak positions of the Si-O-Si(M) band between IWS and Si-Al-Fe glass indicated that not only Pb but also other minor heavy metals such as Cu and Cr were included by covalent bonds into the structure of IWS. Therefore, we concluded that most of the heavy metals in IWS formed covalent Si-O-M bodings and were chemically stable.  相似文献   

10.
The consumption, disposal, material and chemical compositions of rechargeable electric torch wastes (RETWs) were investigated in Ibadan, Nigeria. Twenty-five RETWs of ten models were collected and disassembled. Their battery electrodes (BEs) and printed circuit boards (PCBs) were acid digested and leached using United States Environmental Protection Agency (USEPA) method 3050B and USEPA Method 1311, respectively. The digests and extracts were analysed for total and extractable Pb, Cd, Cr and Ni using atomic absorption spectrophotometer. The US Test method (CPSC-CH-E 1002-08) was used for digestion of the plastic components. Two hundred questionnaires were distributed to users in Ibadan to determine their usage of RETs and their management when spent. The results indicated that BEs contributed the highest percentage (44 %) component, followed by plastic (38 %). Other components include metal, PCBs, glass and wire. Of the respondents, 61.9 % dispose their spent torches in dumpsites. The mean ± SD concentrations of Pb, Cd, Cr and Ni in the BEs were 500 ± 109 g/kg, 3.94 ± 6.84 mg/kg, 0.33 ± 0.88 mg/kg, 1.68 ± 0.74 mg/kg respectively; in the PCBs, they were 684 ± 42 g/kg, 13.7 ± 17.8 mg/kg, 13.5 ± 10.2 mg/kg and 193 ± 437 mg/kg; and in the plastics, they were 14.1 g/kg, 5.33 mg/kg, 17 mg/kg, and 4.67 mg/kg respectively. The extractable Pb in BE (2670 mg/L) and PCBs (235 mg/L) exceeded the Toxicity Characteristics Leaching Procedure (TCLP) limit of 5 mg/L. RETWs present potential environmental problems in the absence of effective recycling.  相似文献   

11.
In this study, refuse plastic fuel (RPF) was copyrolyzed with low-quality coal and was gasified in the presence of a metal catalyst and steam. Some metal catalysts, such as Ni, NiO, and Mg, and mixtures of these with base promoters such as Al2O3 and Fe2O3 were employed in the pyrolysis and gasification processes to convert the synthesis gas into more valuable fuel gas. The operating temperatures for the pyrolysis and gasification were between 700° and 1000°C. The experimental parameters were the operating temperature, catalyst type, basic promoter type, and steam injection amount. Solid fuel samples (5 g) were fed into a semibatch-type quartz tube reactor when the reactor reached the designated temperature. The synthesis gas was analyzed by gas chromatography. The use of low-quality coal as fuel in co-pyrolysis with RPF was explored. For the co-pyrolysis of RPF and low-quality coal, the effectiveness of the catalysts for fuel gas production followed the order Mg > NiO > Ni. In catalytic gasification of RPF, the addition of Al2O3 seemed to reduce the activity of the corresponding catalysts Ni and Mg. The maximum fuel gas yield (92.6%) was attained when Mg/Fe2O3 was used in steam gasification at 1000°C.  相似文献   

12.
Biosorption potential of new low cost biosorbent prepared from vegetable waste, composed of 1:1 mixture of potato and carrot peels for the removal of Ni(II) from aqueous solution was determined. The residual metallic ion concentrations were determined using an atomic absorption spectrophotometric technique (AAS). Batch experiments were conducted to optimize parameters such as initial pH, temperature, contact time, initial metal ion concentration and biosorbent dose and the results showed that maximum adsorption of Nickel (79.32 %) occurs when the contents were stirred for 75 min with 3.0 g of biosorbent at 35 °C and pH 4. Kinetic studies of the reaction revealed that it follows a pseudo-second order reaction. The experimental results were analyzed in terms of Langmuir and Freundlich isotherms. The Langmuir isotherm model fits well to data of Ni(II) biosorption by the prepared biomass as compared to the model of Freundlich. Both neat and Ni loaded biosorbent samples were analyzed by AAS using a dry ashing process in a furnace and also by use of a FT-IR spectrophotometer and an X-Ray florescence spectrometer in order to confirm the biosorption of Ni(II) and the results have revealed that a significant amount of Ni is present in the spent biosorbent.  相似文献   

13.
Methods for improving the anaerobic digestion of glycerol (propane-1,2,3-triol) were investigated, particularly the effects of using acclimated sludge as seeding material during start-up. Glycerol was supplied to the anaerobic digester at an organic loading rate of 2.5 g-COD L?1 day?1. Four experimental runs were carried out with varying mixing ratios of acclimated sludge to unacclimated sludge (0, 10, 20, and 33%). Calculations were performed by employing a numerical model, whose parameters were determined by experimental measurements. Methane production rate (MPR) for all runs attained similar stable values around 21.4 mmol L?1 day?1, though more time was required for attaining stable state of methane production with lower mixing ratios of acclimated sludge. The initial MPR calculated was proportional to the mixing ratio of acclimated sludge. Furthermore, molecular biological methods showed that the types of microorganisms observed in all runs were similar. These results indicate that the seeding with different mixing ratios of acclimated sludge did not affect the microbial consortia in the anaerobic digestion approaching stable state, but did affect the cell density of the useful microorganisms at the start of methane fermentation. Consequently, it was confirmed that at a higher mixing ratio of acclimated sludge, the start of methane production became more vigorous.  相似文献   

14.
This study conducted gasification and catalytic reforming experiments with the expectation of obtaining new advantages on energy recovery and aimed for the development of an effective catalyst. Initially, the use of thermal gasification technology for waste treatment in line with waste-to-energy strategies was reviewed. Technological systems which have gasification were classified and their current status was discussed. Then, the results of gasification and reforming experiments showed that product gas with 50 % H2 or more was obtained using a Ni catalyst on a mesoporous silica–based SBA-15 support (NiO/SBA-15), which we newly developed. Experiments using wood feedstock revealed that H2 production by the catalyst was better when the NiO content was 20 % (W/W) or more than when another catalyst or the Ni catalyst with a lower Ni loading was used. Tar formation as a by-product was also well controlled by the catalyst, and use of a catalyst with 40 % NiO reduced the tar concentration to less than 0.2 g/\( {\text{m}}^{3}_{\text{N}} \). Experiments using a mixed feedstock of wood and RPF resulted in an increase in hydrocarbon concentration because of insufficient reforming. This finding suggests that future work is required to find a better solution to wood and RPF co-gasification.  相似文献   

15.
Impacts of non-equilibrium on results of percolation experiments on municipal solid waste incineration (MSWI) bottom ash were investigated. Three parallel column experiments were performed: two columns with undisturbed percolation and one column with two sets of 1-month-long flow interruptions applied at liquid-to-solid (L/S) ratios of L/S 2L/kg and 12L/kg, respectively. Concentrations of Na, K, Cl(-), Ca, Si, SO(4)(2-), Al, Cu, Ni, Mo, Ba, Pb, Zn, and dissolved organic carbon (DOC) were monitored throughout the entire leaching period; geochemical modeling was used to identify non-equilibrium-induced changes in the solubility control. Despite both physical and chemical non-equilibrium, the columns were found to provide adequate information for readily soluble compounds (i.e., Na, Cl(-), and K) and solubility-controlled elements (i.e., Ca, SO(4)(2-), Ba, Si, Al, Zn, and Pb). The leaching of Cu and Ni was shown to depend strongly on DOC leaching, which was likely affected by physical non-equilibrium during flow interruptions. Consequently, the leaching of Cu and Ni in the undisturbed columns was shown to be by about one order of magnitude lower compared with the interrupted column. The results indicate that the leaching of DOC-related metals in laboratory column experiments may be considerably underestimated compared with full-scale scenarios in which the impacts from non-equilibrium may be significantly lower. The leaching of Mo (or MoO(4)(2-)) may be controlled solely by its availability in the mobile zone, which in turn appeared to be controlled by diffusion from the stagnant zone; no Mo controlling minerals were predicted by the geochemical modeling.  相似文献   

16.
Prior to composting, the composition of palm oil mill wastes were analyzed. Palm empty fruit bunches (PEFB) contained the highest total organic carbon (52.83 % dry weight) while palm oil mill biogas sludge (POMS) and decanter cake (DC) contained higher total nitrogen (3.6 and 2.37 % dry weight, respectively) than the others. In addition, palm oil fuel ash (POFA) had a high amount of phosphorus and potassium (2.17 and 1.93 % dry weight, respectively). The effect of mixture ratio of POMS and other palm oil mill wastes for composting was studied using the mixed culture Super LDD1 as an inoculum. All compost piles turned dark brown and attained an ambient temperature after 40 days incubation. The pH values were stable in the range of 6.9–7.8 throughout the process whereas the moisture content tended to decrease till the end with the final value around 30 %. After 60 days incubation, the mixture ratio of POMS:PEFB:DC at 2:1:1 with the addition of biogas effluent gave the highest quality of the compost. Its nitrogen content was 31.75 % higher than the other treatments that may be a result of growth of ink cap mushroom (Coprinus sp.). This is the first report on the occurrence of this mushroom during composting. In addition, its nutrients (3.26 % N, 0.84 % P and 2.03 % K) were higher than the level of the Organic Fertilizer Standard. The mixed culture Super LDD1 produced the highest activity of CMCase (6.18 Unit/g) and xylanase (11.68 Unit/g) at 9 days fermentation. Therefore, this solid-state fermentation could be employed for production of compost as well as enzymes.  相似文献   

17.
以介孔分子筛SBA - 15为载体,分别浸渍Mn、Al等催化活性组分,制备了MnO2/SBA-15催化剂和Al-MnO2/SBA-15催化剂.采用X射线衍射、N2吸附-脱附对催化剂的结构进行了表征,在微型固定床反应器上对催化剂的低浓度甲醛催化燃烧性能进行了评价.实验结果表明:MnO2/SBA-15系列催化剂均具有SBA...  相似文献   

18.
为考察我国废催化裂化(FCC)催化剂的危险性及污染特征,以国内典型FCC装置的废催化剂为研究对象,分析其易燃性、反应性、腐蚀性、浸出毒性、毒性物质含量及急性毒性。研究发现:废FCC催化剂无易燃性、反应性、腐蚀性、急性毒性危险;未检测出具有致癌致突变性的有机污染物;废FCC催化剂的特征污染物为Ni及其化合物,Ni的浸出浓度低于国家标准限值,Ni的存在形态为Ni Al2O4尖晶石,而非具有致癌性的Ni O形态。  相似文献   

19.
In this study, a high-rate fibre filter was used as a pre-treatment to stormwater in conjunction with in-line flocculation. The effect of operating the fibre filter with different packing densities (105, 115 and 125 kg/m3) and filtration velocities (20, 40, 60 m/h) with and without in-line flocculation was investigated. In-line flocculation was provided using 5, 10 and 15 mg/L of ferric chloride (FeCl3·6H2O). The filter performance was studied in terms of pressure drop (ΔP), solids removal efficiency, heavy metals (total) removal efficiency and total organic carbon (TOC) removal efficiency. It is found that the use of in-line flocculation at a dose of 15 mg/L improved the performance of fibre filter as measured by turbidity removal (95%), total suspended solids reduction (98%), colour removal efficiency (99%), TOC removal (reduced by 30–40 %) and total coliform removal (93%). The modified fouling index reduced from 750–950 to 12 s/L2 proving that fibre filter can be an excellent pre-treatment to membrane filtration that may be consider as post-treatment. The removal efficiency of heavy metal was variable as their concentration in raw water was small. Even though the concentration of some of these metals such as iron, aluminium, copper and zinc were reduced, others like nickel, chromium and cadmium showed lower removal rates.  相似文献   

20.
Diminishing wood supply and high formaldehyde emission from synthetic adhesive-bonded lignocellulose boards have become concerns. In this research, new adhesive-free boards made from xylanase–laccase-modified bamboo particles were developed. The bamboo particles were pretreated first with xylanase and then with laccase. The synergistic pretreatment was performed according to a Taguchi experiment that included six variables: xylanase treatment (enzyme concentration: 10, 20, 30 U/g; reaction pH: 8, 9, 10; reaction time: 30, 60, 90 min) and laccase treatment (enzyme concentration: 10, 20, 30 U/g; reaction pH: 2, 3, 4; reaction time: 30, 60, 90 min). The particles were hot-pressed to harvest the self-bonded boards, whose physical–mechanical properties were evaluated. The results showed that all six variables (except laccase reaction time) caused significant effects at 0.05 level on physical–mechanical properties of boards. The optimum pretreatment parameters were determined to be xylanase (20 U/g, pH 9, 60 min) and laccase (20 U/g, pH 4, 60 min). The optimized flexural strength, flexural modulus, internal bonding, and 2 h thickness swelling of boards met the highest requirements in Chinese national standard GB/T 4897 (2015) for particleboards. The performance of proposed boards was also better than that of reported self-bonded bamboo particleboards with only a laccase pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号