首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coherent structures in the atmospheric boundary layer are fundamental to the transport of momentum and heat as well as to the production of turbulence. The present work attempts to investigate the behavior of the inclination angle of the vortex packet structures (\(\gamma\)) under different stability conditions. The data were collected from the Marine Ecosystem Research Centre (EKOMAR) site at the east coast of Peninsular Malaysia. The main measurements were conducted by placing two hotwires 3 and 12 m above ground. The two-point correlation method was used to calculate the vortex packet structure inclination angle, while the one-point correlation method was employed to calculate its length-scale. The inclination angle was found to increase under both stable and unstable conditions. As the Obukhov stability parameter (\(\zeta\)) approaches 0, the inclination angle ranged between \(\gamma = 15^\circ\) to \(\gamma = 18^\circ\) for the stable and unstable conditions, respectively, which agrees with the findings of previous research. The vertical gradient of velocity is the dominant parameter affecting the inclination angle under different stability conditions.  相似文献   

2.
Dust emissions from stockpiles surfaces are often estimated applying mathematical models such as the widely used model proposed by the USEPA. It employs specific emission factors, which are based on the fluid flow patterns over the near surface. But, some of the emitted dust particles settle downstream the pile and can usually be re-emitted which creates a secondary source. The emission from the ground surface around a pile is actually not accounted for by the USEPA model but the method, based on the wind exposure and a reconstruction from different sources defined by the same wind exposure, is relevant. This work aims to quantify the contribution of dust re-emission from the areas surrounding the piles in the total emission of an open storage yard. Three angles of incidence of the incoming wind flow are investigated ( $30^{\circ }, 60^{\circ }$ and $90^{\circ }$ ). Results of friction velocity from numerical modelling of fluid dynamics were used in the USEPA model to determine dust emission. It was found that as the wind velocity increases, the contribution of particles re-emission from the ground area around the pile in the total emission also increases. The dust emission from the pile surface is higher for piles oriented $30^{\circ }$ to the wind direction. On the other hand, considering the ground area around the pile, the $60^{\circ }$ configuration is responsible for higher emission rates (up to 67 %). The global emissions assumed a minimum value for the piles oriented perpendicular to the wind direction for all wind velocity investigated.  相似文献   

3.
Waves and turbulence in katabatic winds   总被引:1,自引:0,他引:1  
The measurements taken during the Vertical Transport and Mixing Experiment (VTMX, October, 2000) on a northeastern slope of Salt Lake Valley, Utah, were used to calculate the statistics of velocity fluctuations in a katabatic gravity current in the absence of synoptic forcing. The data from ultrasonic anemometer-thermometers placed at elevations 4.5 and 13.9 m were used. The contributions of small-scale turbulence and waves were isolated by applying a high-pass digital (Elliptical) filter, whereupon the filtered quantities were identified as small-scale turbulence and the rest as internal gravity waves. Internal waves were found to play a role not only at canonical large gradient Richardson numbers $(\overline{\hbox {Ri}_\mathrm{g} } >1)$ , but sometimes at smaller values $(0.1 < \overline{\hbox {Ri}_\mathrm{g}}<1)$ , in contrast to typical observations in flat-terrain stable boundary layers. This may be attributed, at least partly, to (critical) internal waves on the slope, identified by Princevac et al. [1], which degenerate into turbulence and help maintain an active internal wave field. The applicability of both Monin-Obukhov (MO) similarity theory and local scaling to filtered and unfiltered data was tested by analyzing rms velocity fluctuations as a function of the stability parameter z/L, where L is the Obukhov length and z the height above the ground. For weaker stabilities, $\hbox {z/L}<1$ , the MO similarity and local scaling were valid for both filtered and unfiltered data. Conversely, when $\hbox {z/L}>1$ , the use of both scaling types is questionable, although filtered data showed a tendency to follow local scaling. A relationship between z/L and $\overline{\hbox {Ri}_\mathrm{g} }$ was identified. Eddy diffusivities of momentum $\hbox {K}_\mathrm{M}$ and heat $\hbox {K}_\mathrm{H}$ were dependent on wave activities, notably when $\overline{\hbox {Ri}_\mathrm{g} } > 1$ . The ratio $\hbox {K}_{\mathrm{H}}/\hbox {K}_{\mathrm{M}}$ dropped well below unity at high $\overline{\hbox {Ri}_\mathrm{g} }$ , in consonance with previous laboratory stratified shear layer measurements as well as other field observations.  相似文献   

4.
5.
The present paper explores the characteristics of turbulent flow and drag over two artificial 2-D forward-facing waveform structures with two different stoss side slopes of $50^{\circ }$ and $90^{\circ },$ respectively. Both structures possessed a common slanted lee side slope of $6^{\circ }.$ Flume experiments were conducted at the Fluvial Mechanics Laboratory of Indian Statistical Institute, Kolkata. The velocity data were analyzed to identify the spatial changes in turbulent flow addressing the flow separation region with recirculating eddy, the Reynolds stresses, the turbulent events associated with burst-sweep cycles and the drag over two upstream-facing bedforms for Reynolds number $Re_h=1.44\times 10^5.$ The divergence at the stoss side slope between the two structures revealed significant changes in the mean flow and turbulence. Comparison showed that during the flood-tide condition there was no flow separation region on the gentle lee side of the structure with smaller slope at the stoss side, while for the other structure with vertical stoss side slope a thick flow separation region with recirculating eddy was observed at the gentle lee side just downstream of the crest. The recirculating eddy induced on the lee-side had a strong influence on the resistance that the structure exerts to the flow due to loss of energy through turbulence. In contrast, a great amount of reduction in drag was observed in the case of smaller stoss side sloped structure as there was no flow separation. The quadrant analysis was also used to highlight the turbulent event evolution along the bed form structures under flood-tide conditions.  相似文献   

6.
This paper investigates, experimentally and numerically, the shear velocity distribution along a single transverse dune and along two closely spaced dunes, analyzing the flow effects of one dune upon the other. The paper focuses on two-dimensional models simulating transverse sand dunes. The shape of the two pile geometries studied is described by sinusoidal curves, one having a maximum slope of $32^{\circ }$ and the other $27.6^{\circ }$ , with leeward flow separation. The tests were carried out for two undisturbed wind speeds and the experimental data obtained through wind-tunnel modeling encompass flow visualization and shear-velocity results. A generally good agreement is observed between the experimental measurements and computational results. From the inquiry between shear velocity distributions and published eroded contours for the same geometries, it appears the Bagnold’s approach is insufficient in the prediction of threshold conditions in wake flows formed in the dune’s leeward side.  相似文献   

7.
In the present study, the prediction accuracy of a dynamic one-equation sub-grid scale model for the large eddy simulation of dispersion around an isolated cubic building is investigated. For this purpose, the localized dynamic $k_\mathrm{SGS} $ -equation model (LDKM) is employed and the results are compared with the available experimental data and two other classic sub-grid scale models, namely, standard Smagorinsky–Lilly model (SSLM) and dynamic Smagorinsky–Lilly model (DSLM). It is shown that the three SGS models give results in good agreement with experiment. However, near the ground level of the leeward wall, dimensionless time-averaged concentration, $\langle K\rangle $ , profile is not quite similar to the experimental data. It is also demonstrated that the LDKM predicts the values of $\langle K\rangle $ on the roof, leeward and side walls more acceptably than the SSLM and DSLM. Whereas, the streamwise elongation of time-averaged structures of the plume shape is more over-estimated with the LDKM than with the other two SGS models. In terms of numerical difficulty, the LDKM is found to be stable and computationally reasonable. In addition, it does not suffer from a flow dependent constant such as the Smagorinsky coefficient employed in the SSLM model.  相似文献   

8.
In wind tunnel experiments, we study the effects of soil moisture on the threshold condition to entrain fine grain sand/silt into eolian flow and the near-bed concentration of airborne particles. To study the effect of particle shape on moisture bonding, we use two types of particles nearly equal in size: spherical glass beads $(d_{50} = 134\,\upmu \mathrm{m})$ and sieved quartz sand $(d_{50} = 139 \,\upmu \mathrm{m})$ . Both are poorly graded soils. We conducted these experiments at low moisture contents $({<}1\,\%)$ . We found that the spherical particles were more sensitive to changes in moisture than the sand, attributable to the large differences in specific surface area of the two particles. The larger specific surface area for sand is due to the surface roughness of the angular sand particle. Consequently, sand “stores” more moisture via surface adsorption, requiring higher soil moisture content to form liquid bridges between sand particles. Based on these findings, we extend the concept of a threshold moisture content, $w^{\prime }$ —originally proposed for clayey soils—to soils that lack any measureable clay content. This allows application of existing models developed for clayey soils that quantify the moisture effect on the threshold friction velocity to sand and silty soils (i.e., clay content $=$ 0). Additionally, we develop a model that quantifies the moisture effects on near-surface airborne particulate concentration, using experimental observations to determine the functional dependence on fluid and particle properties, including soil specific area. These models can be applied to numerical simulation of particulate plume formation and dispersion.  相似文献   

9.
Tidal vortices play an important role in the flushing of coastal regions. At the mouth of a tidal inlet, the input of circulation by the ebb tide may force the formation of a starting-jet dipole vortex. The continuous ebb jet current also creates a periodic sequence of secondary vortices shed from the inlet mouth. In each case, these tidal vortices have a shallow aspect ratio, with a lateral extent much greater than the water depth. These shallow vortices affect the transport of passive tracers, such as nutrients and sediment from the estuary to the ocean and vice versa. Field observation of tidal vortices primarily relies on ensemble averaging over several vortex events that are repeatable in space and can be sampled by a fixed Eulerian measurement grid. This paper presents an adaptive approach for locating and measuring within tidal vortices that propagate offshore near inlets and advect along variable trajectories set by the wind-driven currents. A field experiment was conducted at Aransas Pass, Texas to measure these large-scale vortices. Locations of the vortices produced during ebb tide were determined using near real-time updates from surface drifters deployed near or within the inlet during ebb tide, and the paths of towed acoustic Doppler current profiler (ADCP) transects were selected by analysis of the drifter observations. This method allowed ADCP transects to be collected within ebb generated tidal vortices, and the paths of the drifters indicated the presence of both the starting-jet dipole and the secondary vortices of the unstable ebb tidal jet. Drifter trajectories were also used to estimate the size of each observed vortex as well as the statistics of relative diffusion offshore of Aransas Pass. The field data confirmed the starting-jet spin-up time (time until the vortex dipole begins to propagate offshore) measured in the laboratory by Bryant et al. [6] and that the Strouhal condition of \(St=0.2\) predicts the shedding of secondary vortices from the inlet mouth. The size of the rotational core of the vortex is also shown to be approximated physically by the inlet width or by \(0.02UT\) , where U is the maximum velocity through the inlet channel and T is the tidal period, and confirms results found in laboratory experiments by Nicolau del Roure et al. [23]. Additionally, the scale of diffusion was approximately 1–15 km and the apparent diffusivity was between 2–130  \(m^2/s\) following Richardsons law.  相似文献   

10.
We present the development and validation of a numerical modeling suite for bubble and droplet dynamics of multiphase plumes in the environment. This modeling suite includes real-fluid equations of state, Lagrangian particle tracking, and two different integral plume models: an Eulerian model for a double-plume integral model in quiescent stratification and a Lagrangian integral model for multiphase plumes in stratified crossflows. Here, we report a particle tracking algorithm for dispersed-phase particles within the Lagrangian integral plume model and a comprehensive validation of the Lagrangian plume model for single- and multiphase buoyant jets. The model utilizes literature values for all entrainment and spreading coefficients and has one remaining calibration parameter \( \kappa \), which reduces the buoyant force of dispersed phase particles as they approach the edge of a Lagrangian plume element, eventually separating from the plume as it bends over in a crossflow. We report the calibrated form \( \kappa = [(b - r) / b]^4 \), where b is the plume half-width, and r is the distance of a particle from the plume centerline. We apply the validated modeling suite to simulate two test cases of a subsea oil well blowout in a stratification-dominated crossflow. These tests confirm that errors from overlapping plume elements in the Lagrangian integral model during intrusion formation for a weak crossflow are negligible for predicting intrusion depth and the fate of oil droplets in the plume. The Lagrangian integral model has the added advantages of being able to account for entrainment from an arbitrary crossflow, predict the intrusion of small gas bubbles and oil droplets when appropriate, and track the pathways of individual bubbles and droplets after they separate from the main plume or intrusion layer.  相似文献   

11.
A mechanistic model of sedimentary oxygen demand (SOD) for hyporheic flow is presented. The permeable sediment bed, e.g. sand or fine gravel, is considered with hydraulic conductivity in the range $0.1 < K < 20$  cm/s. Hyporheic pore water flow is induced by pressure fluctuations at the sediment/water interface due to near-bed turbulent coherent motions. A 2-D advection–diffusion equation is linked to the pore water flow model to simulate the effect of advection–dispersion driven by interstitial flow on oxygen transfer through the permeable sediment. Microbial oxygen uptake in the sediment is expressed as a function of the microbial growth rate, and is related to the sediment properties, i.e. the grain diameter $(d_{s})$ and porosity $(\phi )$ . The model describes the significance of sediment particle size to oxygen transfer through the sediment and microbial oxygen uptake: With increasing grain diameter $(d_{s})$ , the hydraulic conductivity $(K)$ increases so does the oxygen transfer rate, while particle surface area per volume (the available surface area for colonization by biofilms) decreases reducing the microbial oxygen uptake rate. Simulation results show that SOD increases as the hydraulic conductivity $(K)$ increases before a threshold has been reached. After that, SOD diminishes with the increment of the hydraulic conductivity $(K)$ .  相似文献   

12.
A comprehensive experimental investigation for an inclined ( $60^{\circ }$ to vertical) dense jet in perpendicular crossflow—with a three-dimensional trajectory—is reported. The detailed tracer concentration field in the vertical cross-section of the bent-over jet is measured by the laser-induced fluorescence technique for a wide range of jet densimetric Froude number $Fr$ and ambient to jet velocity ratios $U_r$ . The jet trajectory and dilution determined from a large number of cross-sectional scalar fields are interpreted by the Lagrangian model over the entire range of jet-dominated to crossflow-dominated regimes. The mixing during the ascent phase of the dense jet resembles that of an advected jet or line puff and changes to a negatively buoyant thermal on descent. It is found that the mixing behavior is governed by a crossflow Froude number $\mathbf{F} = U_r Fr$ . For $\mathbf{F} < 0.8$ , the mixing is jet-dominated and governed by shear entrainment; significant detrainment occurs and the maximum height of rise $Z_{max}$ is under-predicted as in the case of a dense jet in stagnant fluid. While the jet trajectory in the horizontal momentum plane is well-predicted, the measurements indicate a greater rise and slower descent. For $\mathbf{F} \ge 0.8$ the dense jet becomes significantly bent-over during its ascent phase; the jet mixing is dominated by vortex entrainment. For $\mathbf{F} \ge 2$ , the detrainment ceases to have any effect on the jet behavior. The jet trajectory in both the horizontal momentum and buoyancy planes are well predicted by the model. Despite the under-prediction of terminal rise, the jet dilution at a large number of cross-sections covering the ascent and descent of the dense jet are well-predicted. Both the terminal rise and the initial dilution for the inclined jet in perpendicular crossflow are smaller than those of a corresponding vertical jet. Both the maximum terminal rise $Z_{max}$ and horizontal lateral penetration $Y_{max}$ follow a $\mathbf{F}^{-1/2}$ dependence in the crossflow-dominated regime. The initial dilution at terminal rise follows a $S \sim \mathbf{F}^{1/3}$ dependence.  相似文献   

13.
Laminarization of flow in a two-dimensional dense gas plume was experimentally investigated in this study. The plume was created by releasing CO2 through a ground-level line source into a simulated turbulent boundary layer over an aerodynamically rough surface in a meteorological wind tunnel. The bulk Richardson number (Ri*), based on negative plume buoyancy, plume thickness, and friction velocity, was varied over a wide range so that the effects of stable stratification on plume laminarization could be observed. A variety of ambient wind speeds as well as three different sizes of roughness arrays were used so that possible effects of roughness Reynolds number (Re*) on plume laminarization could also be identified. Both flow visualization methods and quantitative measurements of velocity and intermittency of turbulence were used to provide quantitative assessments of plume laminarization.Flow visualization provided an overall picture of how the plume was affected by the negative buoyancy. With increasing Ri*, both the plume depth and the vertical mixing were significantly suppressed, while upstream propagation of the plume from the source was enhanced. The most important feature of the flow revealed by visualization was the laminarization of flow in the lower part of the plume, which appeared to be closely related to both Ri* and Re*.Measurements within the simulated dense gas plumes revealed the influence of the stable stratification on mean velocity and turbulence intensity profiles. Both the mean velocity and turbulence intensity were significantly reduced near the surface; and these reductions systematically depended on Ri*. The roughness Reynolds number also had considerable influence on the mean flow and turbulence structure of the dense gas plumes.An intermittency analysis technique was developed and applied to the digitized instantaneous velocity signals. It not only confirmed the general flow picture within the dense plume indicated by the flow visualization, but also clearly demonstrated the changes of flow regime with variations in Ri* and Re*. Most importantly, based on this intermittency analysis, simple criteria for characterizing different flow regimes are formulated; these may be useful in predicting when plume laminarization might occur.  相似文献   

14.
During the Queensland floods in the summer of 2010–2011, a flood-driven Brisbane River plume extended into Moreton Bay, Queensland, Australia, and then seaward, travelling in a northward direction. It covered approximately 500 km $^{2}$ . This paper presents a three- dimensional hydrodynamic numerical model investigation into the behaviour of the Brisbane River plume. The model was verified by using satellite observations and field measurement data. The present study concludes that the high river discharge was the primary factor determining the plume size and its seaward extensions. A notable finding was that the plume was a bottom-trapped type rather than a buoyant type. Further, the southerly winds were found to have moderately confined the alongshore extension of the plume, and had caused the plume to mix thoroughly with the ocean water.  相似文献   

15.
In this paper, semi-analytical expressions of the effective hydraulic conductivity ( $K^{E})$ and macrodispersivity ( $\alpha ^{E})$ for 3D steady-state density-dependent groundwater flow are derived using a stationary spectral method. Based on the derived expressions, we present the dependence of $K^{E}$ and $\alpha ^{E}$ on the density of fluid under different dispersivity and spatial correlation scale of hydraulic conductivity. The results show that the horizontal $K^{E}$ and $\alpha ^{E}$ are not affected by density-induced flow. However, due to gravitational instability of the fluid induced by density contrasts, both vertical $K^{E}$ and $\alpha ^{E}$ are found to be reduced slightly when the density factor ( $\gamma $ ) is less than 0.01, whereas significant decreases occur when $\gamma $ exceeds 0.01. Of note, the variation of $K^{E}$ and $\alpha ^{E}$ is more significant when local dispersivity is small and the correlation scale of hydraulic conductivity is large.  相似文献   

16.
For over 100 years, laboratory-scale von Kármán vortex streets (VKVSs) have been one of the most studied phenomena within the field of fluid dynamics. During this period, countless publications have highlighted a number of interesting underpinnings of VKVSs; nevertheless, a universal equation for the vortex shedding frequency ( \(N\) ) has yet to be identified. In this study, we have investigated \(N\) for mesoscale atmospheric VKVSs and some of its dependencies through the use of realistic numerical simulations. We find that vortex shedding frequency associated with mountainous islands, generally demonstrates an inverse relationship to cross-stream obstacle length ( \(L\) ) at the thermal inversion height of the atmospheric boundary layer. As a secondary motive, we attempt to quantify the relationship between \(N\) and \(L\) for atmospheric VKVSs in the context of the popular Strouhal number ( \(Sr\) )–Reynolds number ( \(Re\) ) similarity theory developed through laboratory experimentation. By employing numerical simulation to document the \(Sr{-}Re\) relationship of mesoscale atmospheric VKVSs (i.e., in the extremely high \(Re\) regime) we present insight into an extended regime of the similarity theory which has been neglected in the past. In essence, we observe mesoscale VKVSs demonstrating a consistent \(Sr\) range of 0.15–0.22 while varying \(L\) (i.e, effectively varying \(Re\) ).  相似文献   

17.
Diversity partitioning is becoming widely used to decompose the total number of species recorded in an area or region \((\gamma )\) into the average number of species within samples \((\alpha )\) and the average difference in species composition \((\beta )\) among samples. Single-value metrics of \(\alpha \) and \(\beta \) diversity are popular because they may be applied at multiple scales and because of their ease in computation and interpretation. Studies thus far, however, have emphasized observed diversity components or comparisons to randomized, null distributions. In addition, prediction of \(\alpha \) and \(\beta \) components using environmental or spatial variables has been limited to more extensive data sets because multiple samples are required to estimate single \(\alpha \) and \(\beta \) components. Lastly, observed diversity components do not incorporate variation in detection probabilities among species or samples. In this study, we used hierarchical Bayesian models of species abundances to provide predictions of \(\alpha \) and \(\beta \) components in species richness and composition using environmental and spatial variables. We illustrate our approach using butterfly data collected from 26 grassland remnants to predict spatially nested patterns of \(\alpha \) and \(\beta \) based on the predicted counts of butterflies. Diversity partitioning using a Bayesian hierarchical model incorporated variation in detection probabilities by butterfly species and habitat patches, and provided prediction intervals for \(\alpha \) and \(\beta \) components using environmental and spatial variables.  相似文献   

18.
When modeling atmospheric boundary layer flow over rough landscapes, surface fluxes of flow quantities (momentum, temperature, etc.) can be described with equilibrium logarithmic law expressions, all of which require specification of a roughness length that is, physically, the elevation at which the flow quantity equals its surface value. In high Reynolds number flows, such as the atmospheric boundary layer, inertial forces associated with turbulent eddy motions are responsible for surface momentum fluxes (form, or pressure drag). Surface scalar fluxes, on the other hand, occur exclusively via diffusion in the immediate vicinity of the topography—the interfacial region—before being advected by turbulent eddy motions into the bulk of the flow. Owing to this difference in surface transfer mechanism, the passive scalar roughness length, $z_{0S}$ , is known to be less than the momentum roughness length, $z_0$ . In this work, classical relations are used to specify $z_{0S}$ during large-eddy simulation of atmospheric boundary layer flow over aerodynamically rough, synthetic, fractal topographies which exhibit power-law height energy spectrum, $E_h (k) \sim k^{\beta _s}$ , where $\beta _s$ is a (predefined) spectral exponent. These topographies are convenient since they resemble natural landscapes and $\beta _s$ can be varied to change the topography’s aerodynamic roughness (the study considers a suite of topographies with $-2.4 \le \beta _s \le -1.2$ , where $-2.4$ and $-1.2$ are the “most smooth” and “most rough” cases, respectively, corresponding with roughness Reynolds number, $Re_0 \approx 10$ and $300$ ). It is often assumed that $z_{0S}/z_{0} \approx 10^{-1}$ for all $Re_0$ . But results from this work show that the roughness length ratio, $z_{0S}/z_{0}$ , depends strongly on $Re_0$ , ranging between $10^{-3}$ and $10^{-1}$ .  相似文献   

19.
We consider high-Reynolds-number Boussinesq gravity current and intrusion systems in which both the ambient and the propagating “current” are linearly stratified. The main focus is on a current of fixed volume released from a rectangular lock; the height ratio of the fluids $H$ , the stratification parameter of the ambient $S$ , and the internal stratification parameter of the current, $\sigma $ , are quite general. We perform two-dimensional Navier–Stokes simulation and compare the results with those of a previously-published one-layer shallow-water model. The results provide insights into the behavior of the system and enhance the confidence in the approximate model while also revealing its limitations. The qualitative predictions of the model are confirmed, in particular: (1) there is an initial “slumping” stage of propagation with constant speed $u_N$ , after which $u_N$ decays with time; (2) for fixed $H$ and $S$ , the increase of $\sigma $ causes a slower propagation of the current; (3) for some combinations of the parameters $H,S, \sigma $ the fluid released from the lock lacks initially (or runs out quickly of) buoyancy “driving power” in the horizontal direction, and does not propagate like a gravity current. There is also a fair quantitative agreement between the predictions of the model and the simulations concerning the spread of the current.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号