首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycosporine-like amino acids (MAAs), which occur in diverse taxonomic groups, exhibit in vivo absorption maxima between 310 nm and 360 nm and may play a photoprotective role against ultraviolet (UV) exposure. Using cultures of colonial Phaeocystis antarctica, we examined the relationship between MAA concentration, in vivo UV absorption, photoprotective (carotenoid) and photosynthetic pigments, and photosynthetically available radiation (PAR, 350–700 nm). UV absorption was high; chlorophyll-specific absorption, a * ph, at 330 nm ranged from 0.06 to 0.41 m2/mg chlorophyll a. Values of a * ph (330) were 4–13 times greater than a * ph (676). Mycosporine-glycine, shinorine, and mycosporine-glycine valine are responsible for the strong in vivo UV absorption. The sum of all MAAs increased with irradiance when normalized to chlorophyll a or carbon concentrations, whereas individual MAAs varied independently from each other. Mycosporine-glycine concentrations showed no statistically significant change over the range of light intensities, whereas mycosporine-glycine and shinorine concentrations increased at higher irradiances. The relative fluorescence yield for chlorophyll a was low in the UV region compared to the visible region, implying that absorbed UV radiation (<375 nm) is transferred inefficiently to chlorophyll a in the reaction center. Quantitative estimates of UV screening by MAAs are attributed to elevated MAA concentrations and increased diameter at high light. Received: 31 March 1999 / Accepted: 13 July 2000  相似文献   

2.
The effects of ultraviolet radiation on phytoplankton are usually described as a function of dose (J m–2, weighted appropriately). Experiments conducted in 1988 and 1989 on a marine diatom,Thalassiosira pseudonana (Clone 3H), demonstrate that during lightlimited photosynthesis in visible radiation, the inhibition of photosynthesis by supplemental ultraviolet radiation (principally UV-B: 280 to 320 nm) is a function of irradiance (W m–2) as well as of dose: for equal doses of UV-B, a relatively short exposure to high UV-B irradiance is more damaging to photosynthesis than a longer exposure to lower irradiance. In fact, photoinhibition by UV-B is well described as a monotonic, nonlinear function of irradiance for time scales of 0.5 to 4 h. A nitrate-limited culture was about nine times more sensitive to UV-B than was a nutrient-replete culture, but the kinetics of photoinhibition were similar. These results have some bearing on efforts to describe the effects of ultraviolet radiation on marine primary productivity. Action spectra of photoinhibition by UV can be constructed, but they should only be used to describe photoinhibition for specified time scales. Vertical profiles of relative photoinhibition must be interpreted cautiously because photoinhibition by UV-B is likely to be a function of incubation time and results must therefore be interpreted in the context of vertical mixing.  相似文献   

3.
Growth rate, survival, and stimulation of the production of UV-B (280 to 320 nm) absorbing compounds were investigated in cultures of five commonly occurring Antarctic marine diatoms exposed to a range of UV-B irradiances. Experimental UV-B exposures ranged from 20 to 650% of the measured peak surface irradiance at an Antarctic coastal site (0.533 J m-2 s-1). The five diatom species (Nitzschia lecointei, Proboscia alata, P. inermis, Thalassiosira tumida and Stellarima microtrias) appear capable of surviving two to four times this irradiance. In contrast to Phaeocystis cf. pouchetii, another major component of the Antarctic phytoplankton, the concentrations of pigments with discrete UV absorption peaks in diatoms were low and did not change significantly under increasing UV-B irradiance. Absorbance of UV-B by cells from which pigments had been extracted commonly greatly exceeded that of the pigments themselves. Most of this absorbance was due to oxidisable cell contents, with the frustule providing the remainder. Survival of diatoms did not correlate with absorption by either pigments, frustules or oxidisable cell contents, indicating that their survival under elevated UV-B irradiances results from processes other than screening mechanisms.  相似文献   

4.
Many tropical cnidarians living in shallow water contain a class of ultraviolet-A (UV-A, 320 to 400 nm) and ultraviolet-B (UV-B, 280 to 320 nm) absorbing compounds known as mycosporine-like amino acids (MAAs). These compounds may provide protection from the deleterious effects of solar UV radiation. Using a novel application of reverse-phase high performance liquid chromatography, we find that the temperate sea anemoneAnthopleura elegantissima (collected in 1988 from Bodega Bay, California, and in 1991 from Santa Barbara, California) contains four major MAAs: shinorine, porphyra-334, and two new compounds, mycosporine-taurine and mycosporine-2 glycine. Analysis of zooxanthellate (containing zooxanthellae) and naturally apozooxanthellate (lacking zooxanthellae) specimens acclimated in the presence and absence of UV for 28 d in the spring of 1988 suggests that this anemone, unlike some other anthozoans, does not regulate the concentration of its MAAs in response to UV radiation. The presence of similar concentration of MAAs in apozooxanthellate and zooxanthellate specimens indicates that symbiosis with algae is not required for these compounds to be present in the anemone. The total concentration of MAAs in the zooxanthellae is only about 12% of that in their host's tissues.  相似文献   

5.
Experiments were performed to determine how ultraviolet radiation (UVR) in the environmentally relevant range affects development of the sea urchin Strongylocentrotus droebachiensis (Müller) and whether mycosporine-like amino acids (MAAs), present in the early life stages, reduce UV-induced damage. Eggs, embryos, and larvae contained five MAAs having absorption maxima ranging from 320 to 334 nm. Eggs contained principally shinorine and porphyra-334, which absorb maximally at 334 nm and half-maximally at 312 and 348 nm, spanning much of the environmental range of biologically effective UVR. Concentrations of MAAs remained constant in unirradiated embryos through the gastrula stage, but decreased significantly in two-armed pluteus larvae. Daily exposure to combined photosynthetically active radiation (PAR, 400–700 nm) and UVR did not affect the concentration of MAAs in these embryos up to the two-armed pluteus stage. Prism larvae of sea urchins and the sand dollar Echinarachnius parma (Lamarck) did not accumulate shinorine from the surrounding seawater. Daily exposure of embryos to UVA (320–400 nm) and UVB (295–320 nm) radiation in the presence of PAR induced delays and abnormalities during development, and removing UVB eliminated this effect. Abnormalities in embryos included thickening of the blastoderm wall, filling of the blastocoel by abnormal cells, exogastrulation, and formation of abnormal spicules. The percentage of embryos that developed normally was lower in batches of embryos exposed to PAR + UVA + UVB, except in embryos from urchins maintained on MAA-rich diets. In all cases, the percentage of PAR + UVA + UVB-exposed embryos that developed normally was positively related to the concentration of MAAs in eggs from which the embryos developed. Thus, the MAAs found in S. droebachiensis embryos protect them against UVB-induced abnormalities during their development to at least the four-armed pluteus larval stage. Received: 8 May 2000 / Accepted: 29 September 2000  相似文献   

6.
UV-absorbing substances in zooxanthellate and azooxanthellate clams   总被引:2,自引:0,他引:2  
The effects of UV-A and UV-B radiation on photosynthesis of zooxanthellae within the siphonal mantle of the giant clam, Tridacna crocea, and in isolation were studied. While UV-B irradiation (2.4 W m−2, 20 min) completely suppressed photosynthesis of the isolated zooxanthellae, it had little effect on their photosynthetic ability if they were irradiated while within the siphonal mantle of the host tissue. Chemical analysis of the siphonal mantle of T. crocea showed the presence of significant amounts of mycosporine-like amino acids (MAAs), which absorb UV-A and -B light. However, no MAA was detected in the isolated zooxanthellae. MAAs were concentrated in the siphonal mantle and kidney tissues in comparison with other tissues. In the siphonal mantle, MAA concentrations were the highest in the outermost surface layer where most of the zooxanthella cells resided. This indicates that the zooxanthellae are protected from UV radiation by a screen of concentrated MAAs in the host clam. Aside from T. crocea, significant amounts of MAAs were found not only in other zooxanthellate clams, such as T. derasa, Hippopus hippopus, Colculum cardissa and Fragum unedo, but also in a closely related azooxanthellate clam, Vasticardium subrugosum. On the other hand, no MAA was detected in any of the zooxanthellae from these zooxanthellate clams. No MAA was detected in the tissues of a deep-sea bivalve, Calyptogena soyoae. Although MAAs seem to block strong UV radiation in the shallow-water clam, they are probably not essential for the clam's life in the dark. MAAs in shallow-water clams may be derived from food and accumulated in their tissues, especially in the siphonal mantle and kidney. Received: 29 November 1996 / Accepted: 13 January 1997  相似文献   

7.
Spores of five Laminariales from Arctic Spitsbergen were exposed in the laboratory to photosynthetically active radiation (PAR; 400–700 nm), PAR+UVA radiation (UVAR; 320–400 nm) and PAR+UVAR+UVB radiation (UVBR; 280–320 nm). Subsequently, germination was monitored over periods of 3, 6 and 9 days. The investigated species were the upper sublittoral Saccorhiza dermatodea, the upper to mid-sublittoral Alaria esculenta and Laminaria digitata, the mid-sublittoral L. saccharina and the lower sublittoral L. solidungula. The germination capacity decreased sharply after 16 h exposure to PAR+UVAR+UVBR in all species. However, S. dermatodea was able to recover from the damaging effects of UVBR. There was also a small increase in percentage germination of A. esculenta 6–9 days after the treatment. No recovery was evident in the other species. After 8 h exposure to PAR+UVA+UVB, L. digitata recovered completely, and L. saccharina and L. solidungula, partially. The only species susceptible to PAR+UVAR was L. solidungula. One prominent cytological feature of UVR-exposed spores was the enlargement of phenolic vesicles (physodes) (particularly seen in S. dermatodea and A. esculenta), which may have a protective function against UVR. Pilot experiments under natural irradiance conditions indicate that the PAR component of solar radiation exerts an additional stress. Overall the data show that zoospores of the species from the upper sublittoral are less sensitive to UVR or have the capacity to recover from UV stress in contrast to species from deeper waters, probably due to their UV protective and repair capabilities.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

8.
Three marine diatoms Lauderia annulata Cleve, Odontella sinensis (Greville) Grunow and Thalassiosira rotula Meunier were exposed to ultraviolet (UV) radiation of different wavebands under controlled laboratory conditions (0.035 vol% CO2, 18 °C). Several changes in the patterns of pigments in these organisms were seen depending on the waveband of UV radiation and species examined. UV-B and UV-B plus UV-A radiation led to a reduction in the overall pigment content of all three diatoms. The uptake of 15N-ammonium was less affected by 5-h UV-A (WG 320) but significantly reduced after UV-B and UV-B plus UV-A exposure. The pattern of free amino acid pools varied depending on the applied UV wavebands and the tested diatom. The main protein-bound amino acids of T. rotula decreased after 5-h UV irradiance except leucine. Contents of adenosine 5′-mono-, di-, and triphosphate (AMP, ADP and ATP) were affected differently by UV radiation; ATP values increased at the end of UV-B and UV-B plus UV-A exposure. These results have been discussed with reference to the impact of the different UV sources and the influence on the nitrogen metabolism in connection to pigments and supply with energy. Received: 13 May 1997 / Accepted: 11 October 1997  相似文献   

9.
The effect of solar UV radiation (UVR: 290–400 nm) on the 32P-phosphate uptake rates of natural phytoplankton from a southern Atlantic Ocean coastal lagoon was studied during two consecutive summers at one station located in the marine-influenced area. Due to the shallowness of this lagoon and also to the generally high UV water transparency in this area, phytoplankton are exposed to high UV irradiances. The 32P-phosphate uptake rates measured at several phosphate concentrations were inhibited up to 59.2% by UVR, although uptake stimulation was also observed in four of nine experiments (up to 28%). The effect of UVR on the apparent maximum velocity of 32P-phosphate uptake (V uptake) ranged from an inhibition of 49% to a stimulation of 31%. Although the highest inhibition values were associated with the maximum registered incident UV irradiance, a significant correlation between these two parameters was not observed. Changes in microalgal community structure were not related to the observed UV effect; however, a significant relationship was found between the inhibition of 32P-phosphate uptake rates and V uptake used as a proxy for phosphate deficiency. This relationship suggests that the phytoplankton phosphorus nutritional status modulates their sensitivity to UV exposure. Overall, our results suggest that solar UVR has the potential to affect phosphorus cycling.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

10.
We investigated mycosporine amino acid (MAA) involvement as protective sunscreens in spawn of the sea hare Aplysia dactylomela to determine if adult diet and ultraviolet (UV) exposure affected the UV sensitivity of developing embryos. Adults were fed a red alga rich in MAAs (Acanthophora spicifera) or a green alga poor in MAAs (Ulva lactuca). Adults on each diet were exposed for 2 wk to ambient solar irradiance with two types of acrylic filters; one allowed exposure to wavelengths >275 nm (designated UV) and one to wavelengths only >410 nm (designated NOUV). Spawn from each adult group was likewise treated with UV or NOUV and monitored during development for differences in mortality and metabolic rate (measured as oxygen consumption: O2). Also recorded were number of eggs or embryos per capsule, times to hatching, hatching success, size at hatching, and O2 of adults. Spawn from adults eating red algae was almost twice as rich in MAAs as spawn from adults eating green algae, suggesting that MAA content is diet-related. Although overall quantities of MAAs in the spawn reflected MAA contents of the adult diet, specific MAAs were differentially sequestered in the spawn. Thus, porphyra-334, found in high concentration in Aplysia dactylomela's preferred red algal food, was present in only low concentration in the spawn. Conversely, mycosporine-glycine, in low concentration in red algal food, was the most abundant MAA in the spawn. UV treatment of adults had no effect on quantities of MAAs in the spawn. Adults exposed to UV had significantly higher O2s and spawned twice as often. The UV-treated adults produced spawn with significantly higher O2s and their embryos developed to hatching sooner. The only significant effect of UV exposure of the spawn was to reduce the percentage of veligers hatching from 71 to 50%. There was no significant effect on hatching time or size of the veligers at hatching, nor on number of eggs per capsule. Received: 13 May 1997 / Accepted: 27 June 1997  相似文献   

11.
The endangered seagrass Halophila johnsonii Eiseman, exhibits high-light adapted photophysiology consistent with its distribution in intertidal and shallow subtidal (0–3 m) coastal-lagoon habitats along 200 km of southeastern Florida. To examine the short-term responses of this seagrass to three controlled-irradiance treatments (PAR + UVA + UVB [full spectrum], PAR + UVA, and PAR only), greenhouse-acclimated plants were transferred to outdoor mesocosms during July–August 2002. Chlorophyll fluorescence, UV fluorescence, and samples for pigment extraction were collected in the greenhouse, prior to moving the plants outside and on days 1, 2, 3, 4, 6, 10, and 21 of the 24-day experiment. Typical of sun-adapted plants, effective quantum yields measured by pulse-amplitude modulated (PAM) fluorometry were relatively low in all treatments, ranging from 0.46 ± 0.09 (PAR only) to 0.58 ± 0.08 (PAR + UVA + UVB). In the PAR only treatments, there were strong effects on days 1 and 4, presumably because the irradiance in the greenhouse not only lacked all λ<400 nm, but also had low irradiance maxima (∼700 μmol photons m−2 s−1, compared with ∼1,500 μmol photons m−2 s−1 outside at midday). There were few treatment differences between PAR only and PAR + UVA treatments indicating little effect of UVA radiation on this species. Differences in effective quantum yields and relative electron transport rates between the PAR only and PAR + UVA + UVB treatments on day 4 indicated rapid acclimation to UVB radiation. Tissues of H. johnsonii contained compounds that absorbed strongly in the UV, with a λmax at ∼345 nm (depending on the extraction solvent). Absorption peak maxima and minima changed over the course of the experiment but there were no significant light-treatment differences in any pigment parameters. Percent UV shield values, measured using a newly developed UVA PAM fluorometer, were highest the day after plants were transferred from the greenhouse to the outdoor mesocosms and declined significantly to pretreatment levels in all treatments by day 21. Percent UV shield exhibited a significant positive relationship with UV-absorbing pigment (UVP) absorbance, however, the absence of treatment effects suggests that the wavelengths inducing pigment synthesis must lie between 400 and 700 nm (PAR). The results indicate that H. johnsonii rapidly acclimates to high UVB and PAR which may largely explain its distribution in intertidal and shallow subtidal areas.  相似文献   

12.
The effect of photosynthetic available radiation (PAR) levels, light quality, ultraviolet (UV) radiation, and temperature on photosynthesis, growth, and chlorophyll fluorescence was evaluated in red and green morphotypes of the rhodophyte Kappaphycus alvarezii (Doty) Doty under controlled conditions. Chlorophyll a and phycoerythrin (PE) levels were similar in the red and green morphotypes cultured under the same conditions, but phycocyanin (PC) and allophycocyanin (APC) levels were 2-fold greater in the green than in the red morphotype. Pigment characterization indicated that the overexpression of PC and APC masked the red pigmentation in the green morphotype. Maximum photosynthesis and photosynthetic efficiency were similar between the two morphotypes assayed at a wide temperature range, which was reflected in the similar growth rates observed in outdoor culture systems. In the green morphotype, photosynthetic efficiency increased 2-fold relative to the red morphotype when assayed with red light (λ > 600 nm), indicating that photosynthetic characteristics are modified as a result of pigment variation in these morphotypes. Such increase in photosynthetic efficiency in the green morphotype, however, did not result in greater growth rates when cultured under white light. Short exposure to high levels of solar radiation (UV-A + UV-B + PAR), and filtered solar radiation (UV-A + PAR or PAR) decreased effective quantum yield (ΔF/F m′) in both morphotypes. The reduction of ΔF/F m′ values in the red and green morphotypes was accounted for by high levels of PAR and not by the UV-A + UV-B + PAR and UV-A + PAR treatments. Photoinhibition caused by UV-A, UV-B, or PAR was completely reversed within 30 h after incubations. Recovery rates from photoinhibition, however, were significantly reduced in the green morphotype when incubated with UV-B radiation. The results here suggest that the overexpression of pigments do not necessarily increase photosynthesis and growth in these morphotypes. Received: 19 June 2000 / Accepted: 28 November 2000  相似文献   

13.
The bioaccumulation of ultraviolet radiation-absorbing mycosporine-like amino acids (MAAs) by Strongylocentrotus droebachiensis (Müller) was determined in specimens maintained on MAA-rich and MAA-deficient diets. Individuals were fed either the red alga Mastocarpus stellatus (Stackhouse), which has a high concentration of the MAA shinorine (6.98 nmolmg–1 dry wt), and trace amounts of the MAAs porphyra-334, asterina-330 and palythine, or the brown alga Laminaria saccharina (Lamouroux), which contains no detectable MAAs. Reproductively spent urchins were fed ad libitum during a 9 mo period in 1992 to 1993 until they were once again gravid. To monitor accumulation, samples of urchin tissues and ingested food were taken throughout the 9 mo period from males and females maintained on each diet, and the concentrations of MAAs determined using high performance liquid chromatography. Urchins maintained on a diet of M. stellatus showed an ovarian shinorine concentration (8.33 nmol mg–1 dry wt) 25 times higher than those fed L. saccharina. There was no change in MAA content of testes or somatic tissues in either feeding group. More than 99% of the MAAs present in an experimental meal of M. stellatus were removed during passage through the gut. Previous studies have inferred dietary accumulation of MAAs by comparing MAAs present in animal tissues with the consumer's potential diet in the field. This is the first study to have monitored MAA accumulation in animal tissues in conjunction with a controlled diet having a known MAA composition. Concentrating MAAs in the ovaries may provide eggs released into the water column with protection from damaging solar ultraviolet radiation.  相似文献   

14.
Bleaching (visible loss of symbiont color) in populations of the diatom-bearing foraminifer Amphistegina has been recorded from reefs worldwide since 1991. Field studies and previous laboratory experiments have strongly implicated solar radiation as a factor in bleaching stress. The influence of spectral quality and quantity of photosynthetically active radiation (PAR) and ultraviolet radiation (UV) on growth rates and bleaching in Amphistegina gibbosa was investigated in the laboratory using fluorescent sources of PAR (blue with a spectral peak at 450 nm and white with a 600-nm spectral peak) and biologically effective ultraviolet radiation [UVB (280–320 nm)]. Growth rate, as indicated by increase in maximum shell diameter, saturated at a PAR of 6–8 mol photon m–2 s–1, increased in blue light, and was not influenced by UVB0.0162 W m–2. Frequency of bleaching increased with increasing PAR photon flux density and with exposure to shorter wavelengths, with or without an increase in total energy. Growth was significantly inhibited by UVB at 0.105 W m–2. Specimens in treatments exposed to UVB to PAR ratios >0.003 became dark in color, rather than bleaching, which previous cytological studies indicate is a photo-protective response. Implications of these experiments are that environmental factors that affect either the spectral quality or quantity of solar radiation can influence bleaching in Amphistegina.Communicated by P.W. Sammarco, Chauvin
Dana E. WilliamsEmail: Phone: +1-305- 3614569Fax: +1-305-3614499
  相似文献   

15.
Phaeocystis pouchetii (Hariot) Lagerheim is widely distributed in polar waters, and forms massive near-surface blooms in the marginal ice-edge zone around Antarctica during spring and summer. UV irradiance in the Antarctic marine environment is reportedly as high in October and November as in mid-summer due to stratospheric ozone depletion. Because of the location and timing of theP. pouchetii bloom, this prymnesiophyte will be exposed to high levels of UV-B (280 to 320 nm) radiation. Colourless water-soluble compounds, produced by the colonial stage in the life cycle of this alga, absorb strongly between 250 and 370 nm, with absorbance maxima at 271 and 323 nm. The concentration of these compounds in culturedP. pouchetii depends on the strain, stage in the life cycle, and presence of bacteria. As well as conferring substantial protection to this alga, these substances may also provide UV protection to other organisms present in the water column.  相似文献   

16.
Solar radiation as a primary abiotic factor affecting productivity of seaweeds was monitored in the Arctic Kongsfjord on Spitsbergen from 1996 to 1998. The radiation was measured in air and underwater, with special emphasis on the UV-B (ultraviolet B, 280–320 nm) radiation, which may increase under conditions of stratospheric ozone depletion. The recorded irradiances were related to ozone concentrations measured concurrently in the atmosphere above the Kongsfjord with a balloon-carried ozone probe and by TOMS satellite. For comparison, an ozone index (a spectroradiometrically determined irradiance of a wavelength dependent on ozone concentration, standardized to a non-affected wavelength) was used to indicate the total ozone concentration present in the atmosphere. Weather conditions and, hence, solar irradiance measured at ground level were seldom stable throughout the study. UV-B irradiation was clearly dependent on the actual ozone concentration in the atmosphere with a maximal fluence rate of downward irradiance of 0.27 W m−2 on the ground and a maximal daily fluence (radiation exposure) of 23.3 kJ m−2. To characterize the water body, the light transmittance, temperature and salinity were monitored at two different locations: (1) at a sheltered shallow-water bay and (2) at a wave-exposed, deep-water location within the Kongsfjord. During the clearest water conditions in spring, the vertical attenuation coefficient (K d) for photosynthetically active radiation (PAR) was 0.12 m−1 and for UV-B 0.34 m−1. In spring, coinciding with low temperatures and clear water conditions, the harmful UV radiation penetrated deeply into the water column and the threshold irradiance negatively affecting primary plant productivity was still found at about 5–6 m depth. The water body in spring was characterized as a Jerlov coastal water type 1. With increasing temperature in summer, snow layers and glacier ice melted, resulting in a high discharge of turbid fresh water into the fjord. This caused a stratification in the optical features, the salinity and temperature of the water body. During melt-water input, a turbid freshwater layer was formed above the more dense sea water. Under these conditions, light attenuation was stronger than defined for a Jerlov coastal water type 9. Solar radiation was strongly attenuated in the first few metres of the water column. Consequently, organisms in deeper water are protected against harmful UV-B radiation. In the surface water, turbidity decreased when rising tide caused an advection of clearer oceanic water. In the course of the summer season, salinity continuously decreased and water temperature increased particularly in shallow water regions. The impact of global climate change on the radiation conditions under water and its effects on primary production of seaweeds are discussed, since organisms in the eulittoral and upper sublittoral zones are affected by UV radiation throughout the polar day. In clearer water conditions during spring, this may also apply to organisms inhabiting greater depths. Received: 20 June 2000 / Accepted: 17 October 2000  相似文献   

17.
From September to November 1991, UV-absorbing mycosporine-like amino acids (MAAs) were monitored in a natural population of the sea urchin Sterechinusneumayeri from a coastal area of Anvers Island (Antarctic Peninsula). MAA concentrations were determined for specific tissues (gonad, digestive tract and body wall) from adults collected at four depths (intertidal, 8, 15 and 24 m). Four MAAs were identified: mycosporine-glycine, shinorine, porphyra-334 and paly-thine. Concentrations of MAAs among replicate individuals varied considerably. Ovaries had high concentrations of MAAs (84 to 1389 μg g−1 dry wt), while testes had non-detectable levels. The relative abundance of specific MAAs in ovaries appeared to be related to the spawning cycle. Digestive-tract samples had MAA concentrations as high as 3000 μg g−1 dry wt, but the mean MAA content in intertidal individuals decreased by 70% over 3 mo during spring. The body walls of sea urchins had very low amounts of MAAs (≤ 0.08 μg g−1 dry wt). There were significant depth differences in the␣total MAA content of the ovary ( p <0.001), ( p <0.015), digestive tract ( p <0.001), and body wall with organisms from the intertidal and 8 m depth having the highest concentrations of MAAs. Biological dosimetry indicated that UV-B (280 to 320 nm) wavelengths penetrated 3 to 7 m below the sea ice during the study period. The total MAA content in ovaries decreased with depth on all sample dates; however, the MAA content of the digestive tract and body wall did not exhibit a consistent pattern of change with depth. The MAA content of tissues did not change significantly with the temporal gradient of light exposure that was established by both ozone depletion and increasing photoperiod, except in the digestive tract sampled from intertidal specimens. Adult urchins are probably well-protected from UV exposure by the water column and a calcareous test; however, the results of this study suggest that, even under ice cover, depth of habitation is a determinant of MAA content in S. neumayeri. Large daily and seasonal fluctuations in the light regime, which are characteristic of Antarctic coastal environments, apparently do not provide reliable cues to elicit a detectable, temporal, biochemical response. Received: 19 February 1997 / Accepted: 26 March 1997  相似文献   

18.
G. Döhler 《Marine Biology》1992,112(3):485-489
Natural marine phytoplankton populations from the German Wadden Sea and unialgal cultures of the haptophycean Phaeocystis pouchetii were tested in 1989 under controlled UV-B stress conditions. Assimilation of 15N-nitrate in phytoplankton consisting mainly of P. pouchetii, or in pure cultures of this alga, was found to be very sensitive to enhanced UV-B dosage in comparison 15N-ammonia uptake. In contrast, in phytoplankton samples containing Ceratium spp., Coscinodiscus sp., Noctiluca sp. or others, rate of 15NO3 - uptake was higher and only slightly affected by UV-B irradiance compared to the P. pouchetii sample. UV-B inhibitory effect on uptake of inorganic nitrogen by P. pouchetii was more pronounced under strong white-light conditions and after a UV-B pre-illumination period of several hours than under low white light. Pools of glutamine and alanine decreased after UV-B exposure. Results are discussed with reference to the damaging effects of white light and UV-B on nitrogen metabolism.  相似文献   

19.
Scanning electron microscopic (SEM) study of gills of Catla catla catla (17-day-old) exposed to UV-B radiation (145?µW?cm?2 at the water surface) for three different exposure times: 5, 10 and 15?min was conducted. Fish without UV-B exposure served as control. UV-B radiation damaged both gill filaments and lamellae. The intensity of damage was minimal in 5?min exposed fish, followed by 10?min exposed fish and maximal in 15?min. The gill epithelium was severely damaged in 15?min irradiated fish compared to control. Pavement cells (PVCs) were damaged and the numbers of microridges within PVCs decreased. The deep boundary of PVC was not clear. In some area of gill epithelium, PVCs were destroyed and mitochondrion-rich cells (MRCs) were exposed. The 5?min exposure reduced the number of microridges in the PVCs, but the boundary of PVCs was still visible. MRCs in the gill epithelium were not exposed in 5?min exposed fish. The damage to PVCs and subsequent exposure of MRCs in UV-B irradiated fish may hamper respiratory functions and disturb osmoregulation in catla.  相似文献   

20.

Background

The vertical migration of phytoplankton was investigated in natural waters using in situ fluorescence profiling, chlorophyll a concentrations and life counts at two study sites differing in coloured dissolved organic matter (cDOM) concentrations. The data from the corresponding water depths (50-cm intervals down to 10 m) and times (hourly, before dawn to sunset, several days) were related to the highly resolved (2 nm) underwater ultraviolet radiation (UVR)/photosynthetic active radiation (PAR) transparency (290 to 700 nm).

Results

Chlorophyll a maxima of mainly motile dinoflagellates were observed in situ at all days and at both study sites (open marine, brackish waters), independent on prevailing weather conditions or cDOM concentrations. Phytoplankton migration was triggered solely by irradiance in the 400- to 700-nm wavelength range (PAR) at the particular water depth, irrespective of PAR/UVR ratios and surface UVR (290 to 400 nm), after an illumination period of about 40 min. Interestingly, the PAR tolerance levels of the phytoplankton, which have been lower in cDOM-rich waters, matched their light acclimation values determined by parallel PAM measurements.

Conclusions

The response of the phytoplankton to PAR is not a sufficient protection strategy versus increasing UVR levels, which might have wide ecological implications beyond the level of primary producers to impact important ecosystem functions such as the delicate trophic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号