首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monthly samples were collected in oceanic waters off Discovery Bay, Jamaica, in 60- and 200-m vertical hauls, using 200- and 64-m mesh plankton nets, from June 1989 to July 1991. Length-weight regressions were derived for twelve genera of copepods (R2=0.79 to 0.97). For eight occasions spanning the study period, biomass estimates generated from these length-weight regressions differed by only 3% from direct weight determinations. The mean ash content of copepods was 7.1%, and the energy density was 20.8 kJ g-1 ash-free dry weight (AFDW). Mean annual biomass of the total copepod community in the upper 60 m was 1.83 mg AFDW m-3 (range 1.14 to 2.89 mg AFDW m-3), and for the 200-m water column was 0.96 mg AFDW m-3 (range 0.12 to 1.99 mg AFDW m-3). Estimates of generation times for five common taxa ranged from 16.1 to 33.4 d. None of the taxa investigated displayed isochronal development; in general, stage duration increased in later copepodite stages. Weight increments showed a significant decrease in later copepodite stages, but with strong reversal of the trend from stage 5 to adult female in most species. Daily specific growth rates also declined in later copepodite stages, and ranged from 1.49 d-1 in stage 1–2 Paracalanus/Clausocalanus spp. to 0.04 in stage 5-female of Oithona plumifera. Progressive food limitation of somatic copepodite growth and egg production is postulated. Naupliar production was 50.4 to 59.5% of copepodite production, and egg production was 35.1 to 27.7% of copepodite production in the 60-and 200-m water columns, respectively. Total annual copepod production, including copepodites, nauplii, eggs and exuviae, was 160 kJ m-2 yr-1 for the upper 60 m and 304 kJ m-2 yr-1 for the upper 200 m. Secondary production of the copepod community in oceanic waters off Discovery Bay approaches 50% of the corresponding value in tropical neritic waters.  相似文献   

2.
Our view of the effects of temperature on bacterial carbon fluxes in the ocean has been confounded by the interplay of resource availability. Using an extensive compilation of cell-specific bacterial respiration (BRi) and production (BPi), we show that both physiological rates respond to changing temperature in a similar manner and follow the predictions of the metabolic theory of ecology. Their apparently different temperature dependence under warm, oligotrophic conditions is due to strong resource limitation of BP, but not of BRi. Thus, and despite previous preconception, bacterial growth efficiency (BGE = BPi/[BPi + BRi]) is not directly regulated by temperature, but by the availability of substrates for growth. We develop simple equations that can be used for the estimation of bacterial community metabolism from temperature, chlorophyll concentration, and bacterial abundance. Since bacteria are the greatest living planktonic biomass, our results challenge current understanding of how warming and shifts in ecosystem trophic state will modify oceanic carbon cycle feedbacks to climate change.  相似文献   

3.
The distribution of phytoplankton primary production into four size fractions (>10 m, 10-3 m, 3-0.2 m and <0.2 m), the utilization of algal exudates by bacteria and the bacterial production were studied in a eutrophication gradient in the northern Baltic proper. The polluted area exhibits substantially increased nutrient, especially nitrogen, levels while only minor differences occur in salinity and temperature regimes. Total primary production was 160 g C · m-2 · yr-1 at the control station and about 275 g C · m-2 · yr-1 at the eutrophicated stations. The estimated total exudate release was 16% of the totally fixed 14CO2 in the control area and 12% in the eutrophicated area (including the estimated bacterial uptake of exudates). The difference in14CO2 uptake rates between incubation of previously filtered water (<3, <2, <1 m) and unfiltered water was used to estimate bacterial uptake of phytoplankton exudates which were found to contribute about half of the estimated bacterial carbon requirement in both areas. Bacterial production was estimated by the frequency of dividing cells (FDC) method as being 38 g C · m-2 · yr-1 at the control station and 50 g C · m-2 · yr-1 at the eutrophicated stations. To estimate the mean in situ bacterial cell volume a correlation between FDC and cell volume was used. The increased annual primary production in the eutrophicated area was due mainly to higher production during spring and autumn, largely by phytoplankton cells (mainly diatoms) retained by a 10 m filter. Primary production duringsummer was similarin the two areas, as was the distribution on different size fractions. This could possibly explain the similar bacterial production in the trophic layers at all stations since the bulk of bacterial production occurs during summer. It was demonstrated that selective filtration does not quantitatively separate photoautotrophs and bacteria. A substantial fraction of the primary production occurs in the size fraction <3 m. The primary production encountered in the 3-0.2 m fraction was due to abundant picoplankton (0.5 to 8 · 107 ind · l-1), easily passing a 3 m filter. The picoplankton was estimated to constitute up to 25% of the total phytoplankton biomass in the control area and up to 10% in the eutrophicated area.  相似文献   

4.
Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.  相似文献   

5.
The relationships between surface chlorophyll and integrated values of chlorophyll and primary production are examined in the California Current and the central North Pacific Ocean. In the California Current, surface chlorophyll is correlated with both integrated chlorophyll and integrated primary production, although there is considerable scatter in the relationships. In the central North Pacific, surface chlorophyll is not correlated with either integrated chlorophyll or integrated primary production. An analysis of closely spaced replicate casts shows that in both areas most of the scatter in the relations between surface values and integrated values is due to spatial or temporal changes in the relations themselves rather than measurement error. The use of surface chlorophyll or fluorescence values as indicators of the biological state of pelagic ecosystems should thus be applied with caution.  相似文献   

6.
The in vivo chlorophyll a fluorescence index (F+DCMU-F-DCMU/F+DCMU) of natural waters was compared to the 14C-determined primary production, and the fluorescence intensity in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (F+DCMU) was studied as a function of extracted and spectrophotometrically determined chlorophyll concentrations. Samples were taken every second week from May through October, 1979, at the station Systrarna situated in a coastal area of the Bottnian Sea. In addition, samples from the Archipelago Sea of the Baltic were collected on board the Finnish research vessel R/S Aranda during the September cruise 1979. The correlations between the fluorescence index and the 14C-determined primary production and between F+DCMU and total chlorophyll concentration were good when samples taken over short time intervals were compared. The shortcomings of both the fluorescence and the 14C methods are discussed. It is concluded that the fluorescence method is useful if it is desirable to follow with high time resolution any changes in the potential for photosynthesis (or primary production) in a water mass over relatively short time periods; e.g. during an algal bloom. The fluorescence method can furthermore be technically developed for automatic monitoring with a high time resolution. Efforts are being made in our laboratory to develop the method further to give information about the in situ rates of photosynthesis rather than the potential for photosynthesis in a photoplankton population.  相似文献   

7.
Sewage discharges are among the most common anthropogenic stressors on rocky shores. However, studies on benthic invertebrates’ responses to sewage pollution on insular assemblages are rare. In order to fulfil this gap, (i) the effects of sewage pollution and (ii) the recovery capacity of eulittoral insular assemblages were examined. The study was conducted on Terceira Island (Azorean Archipelago, Portugal), in four distinct areas: one impacted area (outfall in operation), one post-impacted area (decommissioned outfall) and two undisturbed reference areas. Results showed that the abundance of the dominant species changed between reference and impacted areas. More specifically, the abundance of limpets Patella candei, and barnacles Chthamalus stellatus decreased, while the abundance of littorinids Tectarius striatus and Melarhaphe neritoides increased near the sewage discharges. Seventeen months after removal of the outfall, limpet and barnacle populations had partially recovered, but littorinid populations had still not fully recovered. This study confirms the negative effects of sewage discharges on eulittoral assemblages, and provides information on the resilience of benthic species following the cessation of sewage disposal.  相似文献   

8.
The irradiant energy values in the Saronicos Gulf (Aegean Sea) for the period December 1963 to March 1964 were computed from the solar irradiance values measured at the Observatory of Athens. The computation was based on the energy curves presented by Jerlov and the type of water as determined from measurements of transmission. The results of the computations were related to the values of primary production in the Gulf on the same dates and strong correlation was observed. The relation found was compared with the theoretical relation of Steele and satisfactory agreement was found.  相似文献   

9.
Intertidal invertebrates locally enhance primary production   总被引:3,自引:0,他引:3  
Pfister CA 《Ecology》2007,88(7):1647-1653
The contribution of autochthonous vs. allochthonous inputs to productivity is an important determinant of ecosystem function across multiple habitats. In coastal marine systems, nutrients are thought to come primarily from the upwelling of deep, nutrient-rich water. Using experimental manipulations of a dominant tide pool animal, the mussel Mytilus californianus, I show that the presence of mussels greatly increases the supply of inorganic nitrogen and phosphorus. Mussels further had a direct effect on productivity: benthic microalgal abundance increased by a factor of 4-8, while the growth of a red alga was four times greater in the presence of mussels. The increase in nitrite and nitrate associated with mussels further suggests nitrifying activity by microbes. These findings have broad implications for coastal marine systems, including that regenerated nutrients may contribute more to productivity than previously recognized and that the presence of animal-generated nutrients sets the stage for numerous positive interactions.  相似文献   

10.
Net primary production (NPP), the difference between CO2 fixed by photosynthesis and CO2 lost to autotrophic respiration, is one of the most important components of the carbon cycle. Our goal was to develop a simple regression model to estimate global NPP using climate and land cover data. Approximately 5600 global data points with observed mean annual NPP, land cover class, precipitation, and temperature were compiled. Precipitation was better correlated with NPP than temperature, and it explained much more of the variability in mean annual NPP for grass- or shrub-dominated systems (r2 = 0.68) than for tree-dominated systems (r2 = 0.39). For a given precipitation level, tree-dominated systems had significantly higher NPP (approximately 100-150 g C m(-2) yr(-1)) than non-tree-dominated systems. Consequently, previous empirical models developed to predict NPP based on precipitation and temperature (e.g., the Miami model) tended to overestimate NPP for non-tree-dominated systems. Our new model developed at the National Center for Ecological Analysis and Synthesis (the NCEAS model) predicts NPP for tree-dominated systems based on precipitation and temperature; but for non-tree-dominated systems NPP is solely a function of precipitation because including a temperature function increased model error for these systems. Lower NPP in non-tree-dominated systems is likely related to decreased water and nutrient use efficiency and higher nutrient loss rates from more frequent fire disturbances. Late 20th century aboveground and total NPP for global potential native vegetation using the NCEAS model are estimated to be approximately 28 Pg and approximately 46 Pg C/yr, respectively. The NCEAS model estimated an approximately 13% increase in global total NPP for potential vegetation from 1901 to 2000 based on changing precipitation and temperature patterns.  相似文献   

11.
Under conditions of new nitrogen availability and low light intensities, light quality (blue, green, or red light) was not found to affect carbon fixation patterns into major metabolic fractions (total ethanol soluble, carbohydrate, and protein) in preconditioned nitrogen enriched or limited apical tips of Gracilaria verrucosa Papenfuss. Within the ethanol soluble fractions of both nitrogen enriched and limited tips, blue light treatment led to a greater percentage of 14 carbon in amino acids as compared to non-ninhydrin reactive metabolites. A lesser effect was observed with red light, and green light did not appear to stimulate amino acid synthesis appreciably. The low intensity blue light effect in G. verrucosa appears to be an enhancement of nonphotosynthetic carbon incorporation into amino acids, possibly through some form of the urea-ornithine cycle.Harbor Branch Foundation Contribution No. 237  相似文献   

12.
Marine macroalgae are believed to be among the most productive autotrophs in the world. However, relatively little information exists about spatial and temporal variation in net primary production (NPP) by these organisms. The data presented here are being collected to investigate patterns and causes of variation in NPP by the giant kelp, Macrocystis pyrifera, which is believed to be one of the fastest growing autotrophs on earth. The standing crop and loss rates of M. pyrifera have been measured monthly in permanent plots at three sites in the Santa Barbara Channel, USA. Collection of these data began in June 2002 and is ongoing. Seasonal estimates of NPP and growth rate are made by combining the field data with a model of kelp dynamics. The purpose of this Data Paper is to make available a time series of M. pyrifera NPP, growth, and standing crop that is appropriate for examining seasonal and interannual patterns across multiple sites. Data on plant density in each plot and censuses of fronds on tagged plants at each site are also made available here. NPP, mass-specific growth rate, and standing crop are presented in four different metrics (wet mass, dry mass, carbon mass, and nitrogen mass) to facilitate comparisons with previous studies of M. pyrifera and with NPP measured in other ecosystems. Analyses of these data reveal seasonal cycles in growth and standing crop as well as substantial differences in M. pyrifera NPP among sites and years.  相似文献   

13.
The perennially ice-covered, closed basin lakes in the McMurdo Dry Valleys respond rapidly to environmental changes, especially climate. For the past 15 years, the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program has monitored the physical, chemical and biological properties of the lakes in Taylor Valley. In order to better assess the physiochemical controls on the biological process within one of these lakes (Lake Hoare), we have used vertical profile data to estimate depth-dependent correlations between various lake properties. Our analyses reveal the following results. Primary production rates (PPR) are strongly correlated to light (PAR) at 12-15 m and to soluble reactive phosphorus (SRP) at 8-22 m. Chlorophyll-a (CHL) is also positively correlated to PAR at 14 m and greater depths, and SRP from 15 m and greater. This preliminary statistical analysis supports previous observations that both PAR and SRP play significant roles in driving plant growth in Lake Hoare. The lack of a strong relationship between bacterial production (BP) and dissolved organic carbon (DOC) is an intriguing result of the analysis.  相似文献   

14.
海洋初级生产力估算在渔业资源管理、碳循环和全球变化研究中具有重要意义,准确的海洋初级生产力估算模型可直接为渔业生产和海洋管理提供决策支持,卫星遥感技术能够及时提供地表大尺度、动态的生态环境参数,因而在海洋初级生产力估算方面得到了广泛的应用.首先介绍了遥感估算海洋初级生产力的原理,对不同遥感模犁包括经验模型和基于生物机理的BPM模型、LPCM模型和VGPM模型等生理过程模型进行了比较分析.以渤黄海海域为研究区,利用MODIS/AQIJA卫星数据产品中的海表温度SST、离水辐射率Lw、海水漫射衰减系数.Kd490和海洋光合有效辐射PAR,计算出水柱的最大碳固定速率、真光层深度、遥感叶绿素浓度.选择全遥感数据驱动的生理过程模型VGPM,对渤黄海的初级生产力进行了估算和分析.结果表明:通过MODIS卫星数据基于VGPM模型估算的渤黄海海域的海洋初级生产力很好地揭示了海洋初级生产力在不同海区的分布和变化.整个渤黄海海区初级生产力的总体分布为从近海向外逐渐降低,其中渤海要较高一些,和前人调查比较一致.  相似文献   

15.
Mid-water, oceanic crustaceans were either fed food labelled with (14C) palmitic acid under controlled conditions, or injected directly with (14C) palmitic acid. Lipid classes and their constituent fatty acids and fatty alcohols were subsequently separated and assayed for radioactivity. Significant levels of radioactivity were present in the 16:01 alcohols and 18:1 acids of wax esters, and in the 16:0/16:1, 18:0/18:1, 20:5 and 22:6 acids of both triglycerides and phospholipids. It was concluded that these crustaceans were capable of biosynthesis of wax esters and higher polyunsaturated fatty acids.  相似文献   

16.
对太湖梅梁湾水体实测结果表明 :在水体表面 ,UV -C的强度较小 ,只有 10 -5μE·m-2 ·s-1数量级 ;UV -B的强度随着波长的增加而呈现递增的趋势 ;UV -A的强度较强 ,达 10 -2 μE·m-2 ·s-1数量级 ,并且在水体中衰减较快 ,衰减系数 (Kd)可以达到 12 .5m-1。可见光在水体中Kd 可达 8.2m-1。在水下 0 .5m处 ,紫外线不足表面光强的 1% ,可见光是表面光强的 2 0 %左右。初级生产力在表面相对较小 ,在水下 0 .2m处最大 ,且随水深的增加而减少 ;在水体中直接测定发现 ,0 .2m处溶解氧值较高。初级生产力的这种分布是水体中紫外光与可见光共同作用的结果。  相似文献   

17.
Rates of fecal pellet production have been recorded from seven species of oceanic salps feeding on natural diets. Expressed as g C defecated per mg salp body C per hour, the values range between 3.7 and 27.7. Carbon: nitrogen ratios of the salp fecal pellets average 11.4; the organic matter of the pellets is mainly protein and carbohydrate. Sinking velocities of the pellets are very high, ranging from 320 to 2 238 m d-1 for pellets from three species. However, the pellets sink slower than would be predicted from extrapolation of rates for crustacean pellets, probably due to the shape of the pellets and their density. The high rates of defecation, large size and rapid sedimentation of salp fecal pellets make them likely mechanisms for rapid transport of small particulate matter from surface waters to deep water and the benthos.  相似文献   

18.
Protecting biodiversity has become a major goal in managing coastal forests in the Pacific Northwest--an area in which human activities have had a significant influence on landscape change. A complex pattern of public and private forest ownership, combined with new regulations for each owner group, raises questions about how well and how efficiently these policies achieve their biodiversity goals. To develop a deeper understanding of the aggregate effect of forest policies, we simulated forest structures, timber production, and socioeconomic conditions over time for the mixture of private and public lands in the 2.3-million-ha Coast Range Physiographic Province of Oregon. To make these projections, we recognized both vegetative complexity at the stand level and spatial complexity at the landscape level. We focused on the two major factors influencing landscape change in the forests of the Coast Range: (1) land use, especially development for houses and cities, and (2) forest management, especially clearcutting. Our simulations of current policy suggest major changes in land use on the margins of the Coast Range, a divergence in forest structure among the different owners, an increase in old-growth forests, and a continuing loss of the structural elements associated with diverse young forests. Our simulations also suggest that current harvest levels can be approximately maintained, with the harvest coming almost entirely from private lands. A policy alternative that retained live trees for wildlife would increase remnant structures but at a cost to landowners (5-7% reduction in timber production). Another alternative that precluded thinning of plantations on federal land would significantly reduce the area of very large diameter (>75 cm dbh) conifer forests 100 years into the future  相似文献   

19.
Diurnal changes in abundance caused by vertical migrations have been examined in populations of copepods, ostracods, euphausiids, amphipods, decapods, chaetognaths, siphonophores and fish. The animals were taken in a series of hauls made over a 24 h period with an opening-closing midwater trawl system (RMT 1+8), consisting of a net of 1 m2 mouth area combined in the same frame as one of 8 m2 mouth area. The samples were taken at 250 m depth in a position 30°N; 23°W on 7/8 April 1972. The specific composition of the community and the numbers of individuals changed continuously with time. The numbers of fish, decapods and chaetognaths increased at night, but those of copepods, ostracods and euphausiids decreased. More species of fish, decapods and copepods were present by night than by day, whereas the numbers of species per haul for other groups remained fairly constant. The relative abundances of groups caught by the RMT 1 have been analysed, but similar treatment of the RMT 8 samples was impossible as only 3 groups were taken from this net. Non-migrants were a minority in every group except chaetognaths. Migrant species have been put into one of 6 transitory categories according to their patterns of abundance and hence migrations. Within each category, migratory behaviour varied both inter- and intraspecifically. The patterns of abundance of many species were smooth and continuous, suggesting slow migratory cycles of small amplitude. Conversely, extensive migrants had discontinuous patterns and presumably more rapid movements. Few migrants had a steady numerical plateau between their upward and downward migrations, and most apparently moved up or down continuously. The presence of migratory species in the sampled layer depended upon the time of day or night. It is concluded that, in a vertical series of hauls, the depths of occurrence of migrants will vary with the sampling time. Further-more, a vertical series will show a species minimum migration range but not necessarily its maximum. Individuals of some species were out of phase with the migrations of their main populations. There is evidence that the distributions and migrations of some species of decapods, euphausiids, copepods and fish could be related to the distribution of underwater light. Three pairs of congeneric copepod species were both spatially and temporally segregated for at least part of their diurnal cycles. Such an orderly arrangement could provide a means of reducing competition between species. Some species, however, overtook others on their migrations and the pattern of underwater light cannot, therefore, regulate the distribution of all species in the same way.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号