首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic activity (peroxidase, glutamate dehydrogenase, glutamine synthetase), foliage buffering capacity, soluble protein and nitrogen content were measured in current and previous year needles from young spruce (Picea abies) and fir (Abies alba). The trees were exposed to low levels of SO(2) and/or O(3) and simulated acidic precipitation (pH 4.0) in open-top chambers from 1983 through 1988. Needle samples were taken during March 1988 at the end of the five-year fumigation period. Exposure to SO(2) substantially increased sulphur content in both needle age classes of spruce and fir, and concomitantly reduced the foliage buffering capacity index (BCI), whereas the combined fumigation with SO(2) and O(3) had no effect on BCI. Peroxidase activity was markedly higher in year-old needles compared to current-year needles. However, trees from the SO(2) and SO(2) + O(3) treatments exhibited statistically significant stimulated peroxidase activities. Similarly, changes in the activities of the nitrogen-metabolizing enzymes indicated an altered cellular function of the trees after the long-term pollution stress. Levels of activity of both glutamate dehydrogenase and glutamine synthetase were increased by exposure to SO(2), especially in spruce. Although glutamate dehydrogenase in spruce was affected by all treatments, such changes in activity were found in fir only with the SO(2) treatment. The highest activity of glutamine synthetase, however, occurred in the older needles of trees exposed to SO(2) + O(3). Total nitrogen concentration was either unaffected by the pollutant treatments or decreased in spruce compared to the controls. No statistically significant changes due to the fumigation were found in soluble protein concentrations. Results indicated that chronic exposure to air pollutants lead to alterations in metabolic processes in conifer needles, detectable either by changes in typical stress indicating values or by increases in ammonium assimilation capacity.  相似文献   

2.
Gas exchange was characterized in one- and two year-old spruce (Picea abies L. Karst.) and fir seedlings (Abies alba Mill.) which had been exposed to low levels of ozone, sulfur dioxide and simulated rain or a combination of all three variables in open top chambers from 1983 through 1988. The gas exchange measurements were carried out in March 1988 at the end of the five year experiment. The twigs examined did not exhibit any visible sign of injury, specifically no differences were apparent between trees under the treatments of simulated acidic rain at pH 5.0 and pH 4.0. The study of carbon dioxide response curves showed different effects of the pollutants on the tree species. One-Year-old spruce needles treated with O(3) and simulated acidic precipitation pH 4.0 showed noticeable reduction of net photosynthetic rate. Exposure to the combination O(3) and SO(2) at pH 4.0 resulted in a significant depression of photosynthesis in two-year-old needles Transpiration rate was not decreased to a similar extent. No changes either in photosynthesis or transpiration were found in spruce under fumigation with SO(2) alone. These results indicate that ozone is the principal cause of changes in photosynthetic performance of spruce. It alters mesophyll response rather than reducing stomatal conductance. The specific changes that occur in the mesophyll could be diagnosed as inactivation of a carbon fixing enzyme as well as damage of the electron transport system. Fir seem to be more tolerant to ozone. No changes in photosynthesis and transpiration following exposure to O(3) alone were found. However, SO(2) fumigation, alone or in combination with O(3), resulted in a marked decrease of photosynthetic performance. Particularly, carboxylation efficiency and also maximum carboxylation velocity were depressed indicating a reduction in carbon fixing enzyme activity. No differences between single and combined fumigation treatments regarding these variables were determined. However, parameters measured to determine changes in electron transport rate showed a higher depression in the presence of both pollutants. Transpiration also was reduced by SO(2).  相似文献   

3.
Seedlings of fir (Abies alba Mill.) and spruce (Picea abies L. Karst.) were fumigated with SO(2), O(3) and SO(2) + O(3) in open-top chambers (OTCs) for almost 5 vegetation periods. As background stress, simulated rain of pH 4.0 was applied. Nutrient content of soil, soil solutions, and trees was investigated and balanced. In the upper partition of the soil high concentrations of exchangeable Ca(2+) were found in all chambers. The SO(2) and SO(2) + O(3) treatments led to increased Ca(2+), Mg(2+) and Mn(2+) concentrations in soil solution and the pool of exchangeable protons increased. This response was most evident in the SO(2) and SO(2) + O(3) chambers and less clear in the filtered pH 5.0 control chamber. In the SO(2) treatment increased Mn and S levels were found in the needles. Ca content in the needles showed a decreasing trend. O(3) alone had no consistent effect on needle nutrient content.  相似文献   

4.
The fine roots and myocorrhizae of beech, spruce and fir trees exposed to ozone, sulphur dioxide and simulated acid precipitation in open-top chambers (OTC) were examined both in situ by rhizoscopy and in the laboratory using root samples from soil cores. Prior to measurements the trees were treated for about one year. During the second year of treatment the fine root production of all three tree species was determined rhizoscopically. The OTC experiments were concluded after an additional three years at which time fine root and small root dry matter as well as the absolute and relative frequencies of mycorrhizae of spruce and fir were determined from soil cores. The vitality of spruce mycorrhizae was examined by fluorescein diacetate staining. In addition total contents of essential cations of spruce mycorrhizae were measured. Long-term exposure to SO(2), SO(2) + O(3), and simulated acid precipitation led to an increased mycorrhizal production by fir. On spruce, a decreased number of mycorrhizae was found in the chambers polluted with SO(2), but a high proportion of dead fine roots indicated an increased root production with an intensified turnover or a delayed decomposition of spruce mycorrhizae. The cation analyses showed an accumulation of Ca(2+) and Zn(2+) in the mycorrhizae of spruce exposed to ozone.  相似文献   

5.
This paper reports the results of total sulphur content, photosynthetic pigments, ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) analysed in current-year needles of Norway spruce (Picea abies (L.) Karst.) in the area influenced by sulphur emissions from the Sostanj Thermal Power Plant (STPP), Slovenia, in the period 1991-2004. Ten differently polluted sampling sites in the emission area of STPP were selected. After desulphurization of emission gases from STPP total sulphur content in needles decreased and vitality parameters of needles increased. Moreover, a strong correlation between the average annual emissions of SO(2) from STPP and average annual sulphur content (increase) or average annual chlorophyll content (decrease) in current-year needles was found. The results showed that spruce needles may be an useful bioindicator for detecting changes in the emission rates of SO(2).  相似文献   

6.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings were transported to five forest sites at increasing distances from a pulp mill emitting mainly SO(2). Levels of compounds which may have nutritional or defensive value for aphids on pine and spruce seedlings were studied. Glucose and fructose concentrations were significantly increased in pine and spruce needles near the pulp mill. There were no changes in sucrose and starch concentrations. In pine shoots, total free amino acid concentration and the concentrations of ornithine, lysine, histidine and arginine were significantly negatively correlated with the distance from the pulp mill, while in spruce only the individual amino acids glycine, ornithine, lysine and histidine showed a significant negative correlation with distance. There were no changes in total phenolic, catechin, total monoterpene and total resin acid concentrations. However, in pine seedlings monoterpenes beta-pinene and sabinene and in spruce seedlings resin acid palustric acid were significantly correlated with the distance from the pulp mill. The results indicate that SO(2) disturbs carbohydrate metabolism in spruce and pine seedlings. The elevated concentrations of arginine may be the result of the combinations of SO(2), NO(3) and NH(3) emissions of the pulp mill. The emissions did not have any impact on total amounts of defensive substances in trees. Thus, the possible susceptibility of conifers to herbivores appears to be due to changes in nutritive value rather than to reduced chemical resistance.  相似文献   

7.
European beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Silver fir (Abies alba Mill.) were exposed to low concentrations of ozone (O(3)) and sulfur dioxide (SO(2)), alone and combined, and simulated acid rain (pH 4.0) in sheltered open-top chambers in Hohenheim (Southwest Germany) for almost five years. The concentrations of O(3) and SO(2) used were related to annual ambient average found in southern West Germany. Two control chambers were ventilated with charcoal filtered air and rainfall was simulated at pH 4.0 and 5.0. Because of large dense plant growth in the chambers it was only possible to measure uncompleted growth of shoots in the upper canopy. Therefore, growth analysis was restricted to this area. The treatment with acidic precipitation decreased the annual shoot growth of beech and reduced leaf surface area of those trees. Exposure to SO(2), O(3) alone and in combination resulted in further reduction of shoot length and leaf surface area. Fumigation with SO(2) and O(3) + SO(2) caused insignificant decreases of shoot length, total dry weight and needle surface area of spruce. The lateral leader shoot growth of spruce exposed to O(3) was significantly reduced only in the last year of the experiment. Growth rates of the spruce exposed to charcoal filtered air and non-acidic precipitation were reduced more than those of beech and fir. Growth variables determined for fir reflected different rates of incremental change. Exposure to O(3) resulted in the largest dry matter production of all fir groups but those exposed to charcoal filtered air and non-acidic precipitation responded with the best lateral leader shoot growth, lowest specific leaf area (SLA) and leaf area ratio (LAR) respectively indicating best metabolic efficiency. At the conclusion of this study a classification of sensitivity was developed for the tree species.  相似文献   

8.
Four-year-old spruce clones (Picea abies (L.) Karst.) cultivated in sand and provided with a complete nutrient solution, or a solution deficient in magnesium and calcium, were exposed to the pollutant mixtures SO(2)/NO(2), O(3)/NO(2), and O(3)/SO(2)/NO(2), at realistic concentrations for 32 weeks. Fumigation caused a slight increase of total N contents in current year needles, whereas in one-year-old needles N concentrations did not change. The response of nitrate reductase activity to pollutant stress depended on needle age and nutrient supply, respectively. In one-year-old needles fumigation resulted in a significant inhibition of enzyme activity, particularly in Mg and Ca deficient trees. The combination of all three components proved to be most effective in causing a decrease by 60% compared to the control. In contrast, nitrate reductase activity was stimulated in current year needles, especially by O(3)/NO(2) and O(3)/SO(2)/NO(2). Changes in the activity of nitrate and nitrite reductases are considered as a factor contributing to the high phytotoxic potential of pollutant combinations with NO(2).  相似文献   

9.
Concentrations of Al, B, Ca, Cu, Fe, K, Mg, Mn, N, Na, P, S and Zn in the foliage of white fir (Abies alba), Norway spruce (Picea abies) and common beech (Fagus sylvatica) from 25 sites of the Carpathian Mts. forests (Czech Republic, Poland, Romania, Slovakia and Ukraine) are discussed in a context of their limit values. S/N ratio was different from optimum in 90% of localities when compared with the European limit values. Likewise we found increase of Fe and Cu concentrations compared with their background levels in 100% of locations. Mn concentrations were increased in 76% of localities. Mn mobilization values indicate the disturbance of physiological balance leading to the change of the ratio with Fe. SEM-investigation of foliage waxes from 25 sites in the Carpathian Mts. showed, that there is a statistically significant difference in mean wax quality. Epistomatal waxes were damaged as indicated by increased development of net and amorphous waxes. The most damaged stomata in spruce needles were from Yablunitsa, Synevir and Brenna; in fir needles from Stoliky, and in beech leaves from Malá Fatra, Morské Oko and Beregomet. Spruce needles in the Carpathian Mts. had more damaged stomata than fir needles and beech leaves. Spruce seems to be the most sensitive tree species to environmental stresses including air pollution in forests of the Carpathian Mountains. Foliage surfaces of three forest tree species contained Al, Si, Ca, Fe, Mg, K, Cl, Mn, Na, Ni and Ti in all studied localities. Presence of nutrition elements (Ca, Fe, Mg, K and Mn) on foliage surface hinders opening and closing stomata and it is not physiologically usable for tree species.  相似文献   

10.
For decades, trees have been exposed to atmospheric S pollution (acid rains). They can thus fulfil their S requirements not only via the roots, but also via their needles. However, whether leaf-absorbed S has a different fate from that of root-absorbed S, or may be toxic to the plant, remains uncertain. Norway spruce trees have been contaminated with (35)SO(4)(2-) either via a nutrient solution, or via a spray, and their (35)S distribution has been analysed. In the case of foliar contamination, a high percentage of (35)S(-) was present in the form of SO(4)(2-), both on the surface and inside the youngest needles. In the case of root contamination, the (35)S of the youngest leaves was mainly incorporated into insoluble organic compounds. Older needles showed a different S distribution.  相似文献   

11.
Clone spruce trees (Picea abies L. Karst.) were exposed in the Hohenheim open-top chambers to low levels of O(3) and SO(2), singly and in combination, and to simulated precipitation of two pH treatments (Seufert et al., this volume). At the end of five years of continuous exposure, needles from the 13-year-old trees were sampled and analysed for pigments content by means of HPLC (high pressure liquid chromatography). The pigment content was determined for three needle age classes. Chlorophyll a content, measured on a dry weight basis, was similar for all needle age classes in the control chambers receiving only the simulated rain treatments at pH 5.0 or 4.0, and the chamber receiving O(3) and the rain treatment at pH 4.0. Also, no differences were noted in one-year-old needles in the chambers with SO(2) and simulated precipitation at pH 4.0 and SO(2) + O(3) and simulated precipitation at pH 4.0. Reductions of approximately 10 and 35% were measured in two-year-old needles from the chambers with SO(2) and precipitation at pH 4.0, and SO(2) + O(3) and precipitation at pH 4.0. The three-year-old needles from these chambers had 40% lower chlorophyll a content compared to the control chambers. No treatment effects were seen on the molar ratios of chlorophyll b, the carotenes, lutein, neoxanthin, and the sum of carotenoids involved in the xanthophyll cycle, violaxanthin + antheraxanthin + zeaxanthin, to chlorophyll [Formula: see text]. The xanthophyll cycle, assayed in one-year-old needles under defined light conditions (520 microE m(-2) s(-1), while light) was active in all samples. Needles from the control chambers and the chambers with SO(2) and with O(3) behaved similarly and differed from the SO(2) + O(3) treated needles by a 50% higher zeaxanthin content reached under light.  相似文献   

12.
Foliage on spruce trees (Picea rubens Sarg.) growing on dry SO(2) deposition zones (dry SO(2) deposition ranging from 0.5 and 8.5 S kg ha(-1) year(-1)) downwind from a SO(2) emission source was analyzed to assess chronic effects of long-term low-grade SO(2) deposition on net photosynthesis, stomatal conductance, dark respiration, stomatal antechamber wax structures, elemental concentrations in and on foliage (bulk and surficial concentrations), and types of epiphytic fungi that reside in the phylloplane. Elemental distributions on stomatal antechambers, on fungal colonies, and on smooth surfaces between stomates and fungus colonies were determined with a scanning electronic microscope (SEM) by way of X-ray scanning. It was found that net photosynthesis of newly developed spruce foliage (current-year, and 1-year-old) was not significantly affected by the local SO(2) deposition rates. Sulfur dioxide deposition, however, may have contributed to the gradual decrease in net photosynthesis with increasing needle age. Dark respiration rates were significantly higher on foliage taken from high SO(2) deposition zones. Stomatal rod-web structures deteriorated to flakes with increasing needle age and increasing SO(2) deposition. Further inspection of the needle surfaces revealed an increasing abundance of fungal colonies with increasing needle age. Many fungal taxa were isolated and identified. It was found that black yeasts responded positively, and Xylohypha pinicola responded negatively to high rates of SO(2) deposition. Surficial concentrations of elements such as P, S, K, Cl, Ca were about 10 times higher on fungal colonies than on smooth needle surfaces. Surficial Ca contents on 4 or 5-year-old needles decreased with increasing SO(2) deposition, but surficial S concentrations remained the same. In contrast, bulk foliar Ca and S concentrations increased with increasing SO(2) deposition.  相似文献   

13.
Atmospheric deposition to the edge of a spruce forest in Denmark   总被引:6,自引:0,他引:6  
Atmospheric deposition was measured during 1 year at the forest edge of a Norway spruce stand in Denmark. Inside the forest the deposition of H(+), Ca(2+), Mg(2+), Na(+), K(+), Cl(-), NO(3)(-), NH(4)(2) and SO(4)(2-) with canopy throughfall varies with the distance from the forest edge. The deposition at the edge is found to be 10-20 times as high as deposition to an open field and 2-8 times as high as deposition inside the stand. An exponential decrease in deposition as a function of the distance from the forest edge is found. Increased deposition of K(+) and non-sea salt Mg(2+), which mainly originates as a result of leaching from the needles may be explained by a larger leaf area index (LAI) at the forest edge. Deposition of particulate substances, especially Na(+), Cl(-), Mg(2+) and to some extent SO(4)(2-), NH(4)(+) and NO(3)(-) is increased much more than the LAI, which we believe to be caused by changes in wind movements at the forest edge.  相似文献   

14.
Organism-induced accumulation of iron, zinc and arsenic in wetland soils   总被引:2,自引:0,他引:2  
Four year old spruce (Picea abies (L.) Karst.) seedlings were planted in sand pots and supplied with nutrient solution. Three groups were formed, differing only in manganese nutrition (0.5 ppm, 2.5 ppm, 12.5 ppm, respectively). After three months, five individuals of each group were transferred to a dew chamber. For the next seven weeks the trees were sprayed in the evenings, the relative humidity overnight was kept high and the droplets were collected directly from the needles in the mornings. The trees were sprayed with HNO3 (pH 3.4) during the first three weeks to reduce the natural buffering capacity of the needles. After this time, the trees were sprayed with KCl (1 mM) solution, and NaHSO3 was added to the chamber resulting in SO2 concentrations usually between 50 and 150 microg m(-3). Needles and water samples were analysed. Foliar Ca seemed to be only a short-time buffer even under optimal Ca supply. A highly significant influence of managanese supply on manganese in needles and droplets was observed, as well as on sulphate, H+ and calcium concentrations in the droplets. The SO2 flux to trees treated with 12.5 ppm Mn was about twice as high as to trees treated with 0.5 ppm Mn. The conclusion is that this is due to a synergism between manganese leaching and catalysis of the SO2 oxidation by the leached Mn2+ ions. The results suggest a positive feedback between (moderate) acidification of soils and SO2 and NH3 inputs to terrestrial ecosystems.  相似文献   

15.
The contaminated air with burning plastic floor and electronic scrap was monitored with semipermeable membrane devices (SPMDs) and fresh unpolluted spruce needles at the same time for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). It was found that there were more polychlorinated dibenzofurans (PCDFs) than polychlorinated dibenzo-p-dioxins (PCDDs) collected from contaminated air. The total amounts of PCBs were much higher than that of PCDD/Fs, but the contribution of them to the WHO-TEQ was less than that of PCDD/Fs. Triolein-containing SPMDs can absorb much more PCDD/Fs and PCBs than spruce needles when they were exposed in contaminated air simultaneously. The logarithm of the concentrations of PCDD/Fs and PCBs in SPMDs and in spruce needles at the same sampling time exhibited a significant linear correlation, the correlation coefficients were larger than 0.86 for PCDD/Fs and 0.92 for PCBs. SPMDs and spruce needles are effective passive air sampler for PCDD/Fs and PCBs. SPMDs and spruce needles can complement each other in passive air sampling.  相似文献   

16.
The results of two field studies and an open-top chamber fumigation experiment showed that the response of mature Scots pine to SO(2) and NO(2) differed from that of mature Norway spruce. Moreover, the response of pine seedlings to SO(2) and NO(2) differed from that of mature trees. The greater increase in the needle total S concentrations of pine suggested more abundant stomatal uptake of SO(2) compared to spruce. Both pine seedlings and mature trees also seemed to absorb more N from atmospheric deposition. Mature pine was able to assimilate SO(4)(2-) derived from SO(2) into organic S more effectively than mature spruce at the high S and N deposition sites, whereas both pine and spruce seedlings accumulated SO(4)-S under NO(2)+SO(2) exposure. Spruce, in turn, accumulated SO(4)-S even when well supplied with N. Net assimilation of SO(4)(2-) in conifer seedlings was enhanced markedly by elevated temperature. To protect the northern coniferous forests against the harmful effects of S and N deposition, it is recommended that the critical level for SO(2) as a growing season mean be set at 5-10 microg m(-3) and NO(2) at 10-15 microg m(-3), depending on the 'effective temperature sum' and/or whether SO(2) and NO(2) occur alone or in combination.  相似文献   

17.
In the Hohenheim experiment young spruce (Picea abies L. Karst.) were exposed to low levels of SO(2) and/or O(3) and acid precipitation. At the end of a five-year experimental period (1983-88) the following physiological parameters were examined: water soluble thiols, ascorbic acid, glutathionereductase activity and pigment content. Exposure to SO(2), leads to an increase in thiol content, to a slight decrease of ascorbic acid and to a pronounced decrease of pigments. O(3) exposure increases the content of ascorbic acid and decreases the thiols and the glutathione-reductase activity with no change in the pigment content. The combined exposure to SO(2), and O(3) results in the most distinct deviations compared to the control chamber response. These needles show the highest increase of ascorbic acid and thiols, the dry weight is decreased as is the glutathione-reductase activity and the pigment content is reduced. Consequences of these physiological alterations for the plant's health are discussed.  相似文献   

18.
In declining forests of the Vosges mountains (northeast of France), we previously observed that the yellowing of spruce (Picea abies L. cv. Karsten) needles was associated with impairment of the free radical scavenging capacity of the cells and coincided with chronic exposure to ozone. Chloroplasts of yellow needles were characterized by an abnormal accumulation of photosystem II (PSII) D1-protein in the thylakoids. Further experiments carried out on declining and decline-resistant individual spruce trees characterized in previous studies showed that needle yellowing was associated with impairment of the overall anti-oxidative defense in both the cytosol and the chloroplasts. Both enzymic (peroxidases) and non-enzymic (carotenoids) oxidant scavengers were shown to be affected in the declining spruce. PSII D1-protein accumulation seemed to result from a stabilization of the polypeptide, which led us to hypothesize that oxidative processes might interfere with the specific degradation of this protein in declining spruce, with destructive consequences for the photosystems.  相似文献   

19.
Previous experiments with conifers fumigated with O(3), produced by air-operated electric discharge ozonators, have provided evidence that O(3) increases the leaching of NO(3)(-), NH(4)(+), K(+), Ca(2+), Mg(2+) and some other cations from needles, when the trees are treated with acid mist. This evidence has provided the foundation of the ozone-acid mist hypothesis of spruce decline. We report experiments with Norway spruce saplings fumigated with purified and unpurified O(3). The results show that the accumulation of NO(3)(-) in the needles arises from the rapid deposition of N(2)O(5) and HNO(3) formed from N(2) in the ozonator. An increase in removal of NH(4)(+), Na(+), Ca(2+), Mg(2+), Zn(2+) and Mn(2+) from the needles during soaking in H(2)SO(4), pH3, was also observed, which was related to the increase in NO(3)(-) but was independent of O(3) concentration. It is concluded that results of previous experiments cited in support of the ozone-acid mist hypothesis arose from effects which were at least partly caused by N(2)O(5) produced as a contaminant, and were incorrectly attributed to ozone. Other effects, such as growth stimulations, visible symptons, enhanced frost sensitivity, and infestation by pests or pathogens, which have been attributed to O(3) generated by electric discharge in air, should be interpreted with caution. Future experiments with ozone must eliminate this problem by either using O(2)-driven ozonators, or by purifying the output from air-driven ozonators using cold and/or water traps.  相似文献   

20.
Seedlings of Pinus ponderosa (ponderosa pine) and Abies concolor (white fir) were exposed to acidic fog (pH 2.0, 3.0 or 4.0) in open-field plots for six weeks. The two species exhibited dissimilar injury responses; neither current year nor previous year needles of ponderosa pine were injured by pH 2.0 fog, but current year needles exhibited higher membrane permeability responses (i.e. needle extract conductivity, K+ concentration). In comparison, both needle age classes in white fir were significantly injured by pH 2.0 fog, but no significant effects on membrane permeability were observed. For both species, whole-study average rates of net photosynthesis in previous year needles were lower in plants exposed to pH 2.0 fog than in plants treated with pH 4.0 fog. While decreased process rates coincided with leaf necrosis in white fir, stomatal closure appeared to be the mechanism of inhibition in ponderosa pine with pH 2.0 fog (i.e. no visible injury). The findings of the present study provide evidence that frequent applications of highly acidic fog (i.e. pH 2.0-3.0) can cause temporal alterations in membrane permeability and gas exchange rates in western conifer seedlings, in the presence or absence of visible injury. However, because incipient effects on other measures of foliage health were species-specific (i.e. concentrations of starch, photosynthetic pigments, inorganic nutrients), a general mechanism of phytotoxicity could not be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号