首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Food supply and hatching asynchrony were manipulated for 90 broods of American kestrels (Falco sparverius) during 1989–1991. We measured the growth and mortality of nestlings within four treatment groups (asynchronous, synchronous, food-supplemented, unsupplemented) to test the brood reduction hypothesis of Lack (1947, 1954). Fledging success did not differ between synchronous and asynchronous broods when food was poor but consistent with the brood reduction hypothesis, nestlings died at a younger age in asynchronous broods. When food was supplemented, mortality did not occur in the synchronous broods but youngest nestlings still died in asynchronous nests despite apparently adequate food for the brood. Oldest nestlings in asynchronous broods fledged with a greater mass than their younger siblings, also consistent with Lack's hypothesis. Average nestling quality in synchronous broods was very dependent on food levels. Synchronous young that were supplemented were, on average, the heaviest of any treatment group but young from unsupplemented synchronous broods were the lightest. Overall, patterns of mortality and growth for kestrels support the brood reduction hypothesis when food is limited, but not when it is abundant. This food-dependent benefit of asynchrony in the nestling period is a prerequisite for facultatively adjusted hatching spans during laying.  相似文献   

2.
In siblicidal species, hatching asynchrony could act to reduce sibling rivalry or promote the death of last-hatched chicks. The pattern of hatching asynchrony was experimentally altered in the black kite Milvus migrans. Hatching asynchrony in control broods was intermediate between those of experimentally synchronised and asynchronised broods. Sibling aggression and wounds on the chicks were more commonly observed early in the nestling period and in synchronous nests. Serious injuries were observed on last-hatched chicks in asynchronous nests, as were observations of intimidated or crushed chicks. Sibling aggression was related to food abundance, but some chicks died at an early age in nests with abundant food (cainism). Cainism was more commonly found in asynchronous nests. For species with facultative siblicide, moderate hatching asynchrony could be a compromise between reducing sibling rivalry and avoiding large size differences between sibs that would result in cainism. Female black kites preferentially fed the smallest chicks and exhibited behaviours to reduce sibling aggression, contrary to observations in other siblicidal species. In a highly opportunistic forager such as the black kite, a strategy may exist to protract the life of all the chicks in the brood, waiting for unpredictable situations of food overabundance. This would induce the appearance of a parent-offspring conflict over brood reduction, reflected in the existence of a possible anticipated response by some of the chicks (cainism) and in the appearance of special behaviours by the parents to selectively feed smaller chicks or reduce sibling aggression. In this facultatively siblicidal species, cainism does not seem to be the final stage of an evolutionary trend favouring the raising of high-quality chicks, but a manifestation of a parent-offspring conflict over brood size. Received: 9 March 1998 / Accepted after revision: 8 August 1998  相似文献   

3.
When eggs hatch asynchronously, offspring arising from last-hatched eggs often exhibit a competitive disadvantage compared with their older, larger nestmates. Strong sibling competition might result in a pattern of resource allocation favoring larger nestlings, but active food allocation towards smaller offspring may compensate for the negative effects of asynchronous hatching. We examined patterns of resource allocation by green-rumped parrotlet parents to small and large broods under control and food-supplemented conditions. There was no difference between parents and among brood sizes in visit rate or number of feeds delivered, although females spent marginally more time in the nest than males. Both male and female parents preferentially fed offspring that had a higher begging effort than the remainder of the brood. Mean begging levels did not differ between small and large broods, but smaller offspring begged more than their older nestmates in large broods. Male parents fed small offspring less often in both brood sizes. Female parents fed offspring evenly in small broods, while in large broods they fed smaller offspring more frequently, with the exception of the very last hatched individual. These data suggest male parrotlets exhibit a feeding preference for larger offspring—possibly arising from the outcome of sibling competition—but that females practice active food allocation, particularly in larger brood sizes. These differential patterns of resource allocation between the sexes are consistent with other studies of parrots and may reflect some level of female compensation for the limitations imposed on smaller offspring by hatching asynchrony.  相似文献   

4.
The function of hatching asynchrony in the blue-footed booby   总被引:3,自引:0,他引:3  
The blue-footed booby (Sula nebouxii) commonly hatches two eggs 4 days apart; then the senior (first-hatched) chick aggressively dominates the other and sometimes kills it. Two hypotheses explaining the function of the hatching interval were tested by creating broods with synchronous hatching: the facultative brood reduction hypothesis of Lack (1954) and the sibling rivalry reduction hypothesis of Hahn (1981). The results contradicted most predictions of both hypotheses: synchronous broods formed an aggressive hierarchy similarly to asynchronous broods (controls), and subordinate chicks grew poorly (Fig. 1) and died frequently, similarly to junior chicks in control broods. However, compared with synchronous broods, asynchronous broods showed less aggression (Fig. 2), diminished food allocation to subordinate chicks (Fig. 3) and less total food consumption (30% fewer feeds at age 0–10 days). These behavioral comparisons took into account the different ages of chicks in different treatments. The results suggest that natural asynchrony makes brood reduction more efficient and decreases the costs of sibling aggression to parents, in terms of their future survival or fecundity, as proposed by Mock and Ploger (1987). Further, in exaggeratedly asynchronous broods (8-day hatch interval) junior chicks suffered more aggression (Fig. 4) and grew more slowly than junior chicks in control broods. This result supports the hypothesis of optimal hatch asynchrony of Mock and Ploger (1987).  相似文献   

5.
Hatching asynchrony commonly induces a size hierarchy among siblings and the resultant competition for food between siblings can often lead to starvation of the smallest chicks within a brood. We created herring gull (Larus argentatus) broods with varying degrees of hatching synchrony by manipulating the timing of incubation while maintaining the originally laid eggs. The degree of hatching asynchrony affected sibling size hierarchy at the time of hatching of the last-hatched ”c-chick.” In unmanipulated broods, there was no disadvantage of being a c-chick. However, when asynchrony was experimentally increased, we found reduced survival of the c-chick only in the exaggerated asynchronous experimental group. The effects were observable only during the first 10 days of chick life. We recorded no cases of the chicks dying of starvation. Furthermore, behavioral observations indicated that there was no sibling competition, and no selective feeding of larger sibs in the study colony. We propose that the observed lower survival rates of c-chicks in exaggerated asynchronous broods resulted from their lesser motor abilities, affecting their chances of escaping predators. Fledging success for the whole colony was generally high and almost half of all pairs fledged all three chicks, which is indicative of a good feeding environment. We argue that normal hatching asynchrony is a favorable solution in a good feeding environment, but that increased asynchrony reduces breeding success. We do not view asynchrony in the herring gull as an adaptation for brood reduction and propose instead that it may come about because there has been selection for incubation to start before clutch completion. Received: 14 April 1999 / Received in revised form: 20 October 1999 / Accepted: 23 January 2000  相似文献   

6.
In unpredictable environments, any tactic that enables avian parents to adjust brood size and, thus, energy expenditure to environmental conditions should be favoured. Hatching asynchrony (HA), which occurs whenever incubation commences before clutch completion, may comprise such a tactic. For instance, the sibling rivalry hypothesis states that the hierarchy among chicks, concomitant to HA, should both facilitate the adjustment of brood size to environmental conditions and reduce several components of sibling competition as compared to synchronous hatching, at both brood and individual levels. We thus predicted that brood aggression, begging and feeding rates should decrease and that older chick superiority should increase with HA increasing, leading to higher growth and survival rates. Accordingly, we investigated the effects of an experimental upward and downward manipulation of HA magnitude on behaviour, growth and survival of black-legged kittiwake (Rissa tridactyla) chicks. In line with the sibling rivalry hypothesis, synchronous hatching increased aggression and tended to increase feeding rates by parents at the brood level. Begging rates, however, increased with HA contrary to our expectations. At the individual level, as HA magnitude increased, the younger chick was attacked and begged proportionally more often, experienced a slower growth and a higher mortality than its sibling. Overall, the occurrence of energetic costs triggered by synchronous hatching both for parents and chicks, together with the lower growth rate and increased mortality of the younger chick in highly asynchronous broods suggest that natural HA magnitude may be optimal.  相似文献   

7.
At least 19 hypotheses have been proposed to explain the evolutionary significance of avian hatching asynchrony, and hatching patterns have been suggested to be the result of several simultaneous selective pressures. Hatching asynchrony was experimentally modified in the black kite Milvus migrans by manipulating the onset of incubation during the laying period. Delayed onset of incubation reduced egg viability of first-laid eggs, especially when ambient temperature during the laying period was high. Brood reduction (nestling mortality by starvation or siblicide) was more commonly observed in asynchronous nests. The growth rate was slower in synchronous broods, probably due to stronger sibling rivalry in broods with high size symmetry. Last-hatched chicks in synchronous broods fledged at a small size/mass, while in control broods, hatching order affected growth rates, but not final size. Brood reduction, variable growth rates, and the ability to face long periods of food scarcity are probably mechanisms to adjust productivity to stochastic food availability in a highly opportunistic predator. The natural pattern of hatching asynchrony may be the consequence of opposing selective forces. Extreme hatching synchrony is associated with slow growth rates, small final size of last-hatched chicks, and low viability of first-laid eggs, while extreme hatching asynchrony is associated with high mortality rates. Females seem to facultatively manipulate the degree of hatching asynchrony according to those pressures, because hatching asynchrony of control clutches was positively correlated with temperature during laying, and negatively correlated with the rate of rabbit consumption. Received: 25 October 1999 / Revised: 30 May 2000 / Accepted: 25 June 2000  相似文献   

8.
American white pelicans (Pelecanus erythrorhynchos) lay two eggs but typically rear only one young owing to siblicidal brood reduction affecting the later-hatched, or B-chick. When the A-offspring fails at an early age, the B-chick may survive as a replacement (insurance) offspring. Using a combination of nests with natural and artificially manipulated hatching asynchrony, I examined the hypothesis that hatching asynchrony in this species is adaptively tuned to permit B-chicks to survive during the time they are most likely to be needed as replacements, with brood reduction following when they become redundant. Hatching asynchrony over the natural range of 0–4 days significantly increased within-brood mass differentials and reduced B-chick lifespan. Full synchrony had a marginally negative effect on A-chick mass. Greater asynchrony did not significantly affect the number of days B-chicks survived after hatching of the A-chick, owing to a corresponding extension of time B-offspring were protected from harassment while still within the egg. This resulted in a high probability (> 0.8) of B-chicks surviving through the initial period (5–7 days) of maximum early A-chick loss. Redundant B-chicks were subject to heavy brood reduction, with both chicks likely to have survived at only one each of 94 natural and 84 manipulated (0, 2, and 4 days asynchrony) nests. Hatching asynchrony in American white pelicans, in combination with a rapid development of senior chick siblicidal competence, appears to result in a time course of brood reduction appropriate for an effective insurance reproductive strategy. Received: 2 February 1996 /Accepted after revision: 18 May 1996  相似文献   

9.
We investigated the fledging probability of oystercatcher, Haematopus ostralegus, chicks as a function of hatching order, brood size, territory quality and food availability. Sibling dominance was related to the hatching order in both low- (’leapfrogs’) and high-quality (’residents’) territories. Differences in hatchling mass might have aided the establishment of a dominance hierarchy, since breeders produced small late eggs and hatchlings. These mass differences were most pronounced in leapfrogs, and in large broods in years with lower food availability (’poor’ years). Late hatchlings fledged less often and with lower body masses compared to early hatchlings in all situations. Leapfrogs produced smaller broods and hatched their broods more asynchronously in poor years than leapfrogs breeding in years with more available food (’good’ years) and residents breeding in both poor and good years. Large brood sizes resulted in lower survival of hatchlings in poor years. These results favour the ’brood reduction’ hypothesis. However, contrary to the expectations of this hypothesis, hatching order also affected fledging success in residents. Moreover, large brood size resulted in higher survival of hatchlings in good years, particularly in residents. Thus, although large broods experienced losses due to sibling competition in some years, they nevertheless consistently produced more fledglings per brood in all years, both as leapfrogs and residents. We believe this effect is due to parental quality correlating with initial brood size. Most leapfrogs, at best, fledged one chick successfully each year, losing chicks due to starvation. Nevertheless, leapfrog broods were reduced in size after hatching significantly less quickly than resident broods. These results suggest that breeders lay and hatch insurance eggs to compensate for unpredictable losses due to the high predation rates on both nests (ca 50%) and chicks (ca 90%), in accordance with the ’nest failure’ hypothesis. Received: 14 February 2000 / Revised: 27 September 2000 / Accepted: 10 June 2000  相似文献   

10.
Parental investment theory predicts that parental effort should be related to the reproductive value of the current brood. This depends on both the number of young and the survival prospects of each of them. Thus parents may provide more care to larger broods either because of (1) the direct effect of brood size per se on reproductive value (the “brood size” hypothesis) or because (2) past mortality, reflected in current brood size, predicts future mortality of the brood and hence its reproductive value (the “brood success” hypothesis). Earlier studies have not attempted to distinguish between these alternatives. We tested the hypotheses in the precocial, nidifugous common goldeneye Bucephala clangula, a species with uniparental female care. Maternal effort was measured as the time spent by the female in rearing the brood. We found that brood size itself is not associated with maternal effort, but that females modify their maternal effort according to the mortality already experienced by the brood, supporting the prediction of the brood success hypothesis. We also found that brood mortality varied considerably between broods and that previous mortality predicts future mortality within broods, basic assumptions of the brood success hypothesis. Received: 30 January 1996 / Accepted after revision: 27 October 1996  相似文献   

11.
In avian families, some offspring are rendered unequal by parental fiat. By imposing phenotypic handicaps (e.g., via asynchronous hatching) upon certain of their offspring and not others, parents structure the sibship into castes of advantaged “core” offspring and disadvantaged “marginal” offspring that results in an asymmetric sibling rivalry. Here, I show how this family structure scales up to population level reproductive consequences. In a 17-year study of red-winged blackbirds (Agelaius phoeniceus), I show that year-to-year variation in the number of surviving offspring is driven primarily by variation in the number of marginal offspring at hatching and their posthatching survival. Clutch size, core brood at hatching, and fledging varied little from year to year and had little direct effect on year-to-year variation in total brood size at fledging; conversely, variation in the size of the marginal brood at hatching and at fledging was much greater. Marginal but not core brood size at hatching rose with mean clutch size; in years where parents laid larger average clutches they did so by adding marginal progeny. The mean posthatching survival of marginal offspring was always lower than that of core offspring in a given year, and there was no overlap in the distributions. The highest mean survival of marginal offspring across years fell below the lowest mean survival of core offspring; broods were deeply structured. There was an overall female bias among fledglings, and the sex ratio varied across years, with a higher proportion of the smaller female nestlings in years of below average reproductive success. Such variation was especially pronounced in the marginal brood where a higher incidence of brood reduction allowed greater potential for sex-biased nestling mortality. In years of the highest average reproductive success, the sex ratio in the marginal brood approached equality, whereas in years of the lowest average reproductive success, more than two thirds of 8-day-old nestlings were female. Structuring the brood into core and marginal elements allowed parents to modulate both offspring number and sex under ecological uncertainty with direct consequences for population-level reproductive success. They produced fewer and less expensive fledglings in below average years and more and more expensive fledglings in above average years.  相似文献   

12.
Lesser kestrels (Falco naumanni) lay clutches which appear excessive as only 3% of them yield as many young as eggs laid. Four hypotheses may explain the adaptive value of producing surplus eggs: (1) the bet-hedging hypothesis assumes that the environment varies unpredictably and surplus eggs serve to track uncertain resources; (2) the ice-box hypothesis suggests that surplus offspring serve as a reserve food during a period of shortage; (3) the progeny choice hypothesis says that parents produce surplus offspring in order to choose these with higher fitness; and (4) the insurance-egg hypothesis proposes that extra eggs are an insurance against the failure of any egg. To test the significance of this strategy in the lesser kestrel, an experiment manipu-lating brood size at hatching was carried out over 2 years, with good and bad feeding conditions. The experiment consisted of adding a chick to experimental broods where one egg failed to hatch or removing a randomly selected chick from experimental broods where all eggs had hatched. Independently of annual food availability, pairs with brood sizes reduced by one chick fledged more nestlings than pairs with brood size equalling their clutch sizes. Body condition of young was also better in the former group, but only in 1993 (a high-food year). Independently of year, mean local survival of parents with complete broods at hatching was lower than for parents raising reduced broods. These results supported only the insurance-egg hypothesis which says that surplus eggs may be an insurance against the failure of any egg, but parents may suffer reproductive costs when all eggs hatch. Received: 17 January 1997 / Accepted after revision: 27 April 1997  相似文献   

13.
Need and nestmates affect begging in tree swallows   总被引:3,自引:0,他引:3  
We conducted an experiment on nestling tree swallows (Tachycineta bicolor) to examine predictions from signalling models for the evolution of conspicuous begging behaviour. Specifically, we examined the relationship between (1) nestling begging intensity and hunger, (2) begging intensity and parental provisioning and (3) begging intensity and nestmate condition. Forty broods of 9-day-old nestlings were removed from their nests for 1 h and assigned to one of the following three treatments: (1) all nestlings in the brood deprived of food (n = 13), (2) all nestlings in the brood fed (n = 11) or (3) half the nestlings in the brood deprived and half fed (n = 16). Videotapes before and after the treatments showed that begging intensity increased in broods in which all of the nestlings had been deprived and decreased in broods in which all of the nestlings had been fed. Deprived nestlings in the half-and-half treatment did not change their begging intensity in response to treatment, while fed nestlings in this treatment group showed a decrease in begging intensity. Parent tree swallows increased their feeding rate to deprived broods and decreased their rate to fed broods. Within broods, parents decreased their feeding rate to fed nestlings, but showed no significant change in feeding to deprived nestlings. Our results suggest that begging intensity is influenced by hunger and that parents appear to respond to variation in begging intensity. The begging of nestmates also appears to influence begging independently of need. These results are consistent with predictions derived from signalling models of begging. Received: 20 June 1997 / Accepted after revision: 19 January 1998  相似文献   

14.
In altricial birds, resource allocation during early developmental stages is the result of an interaction between parental feeding decisions and scramble competition between nestmates. Hatching asynchrony in birds leads to a pronounced age hierarchy among their offspring. Therefore, whenever parents exert control over resource allocation parents feeding asynchronous broods should simultaneously assess individual offspring internal condition and age. In this study, we first studied whether the highly ultraviolet (UV) reflective body skin of nestlings in the asynchronous European Roller (Coracias garrulus; roller hereafter) relates to nestling quality. In a second stage, we experimentally studied parental biases in food allocation towards senior and junior sibling rollers in relation to a manipulation of UV reflectance of the skin of their offspring. Heavier roller nestlings had less brilliant and less UV saturated skins than weaker nestlings. In our experiment, we found that parents with large broods preferentially fed nestlings presenting skin coloration revealing small body size (i.e. control nestlings) over nestlings presenting skin coloration revealing large body size (i.e. UV-blocked nestlings). Within the brood, we found that parental food allocation strategy depended on nestling age: parents preferentially fed senior nestlings signalling small body size, but did not show preference between control and UV-blocked junior nestlings. These results emphasise that parent rollers use UV cues of offspring quality while balancing the age of their offspring to adjust their feeding strategies, and suggest that parents may adopt finely tuned strategies of control over resource allocation in asynchronous broods.  相似文献   

15.
Summary Variations in the begging behaviour of the nestlings of altricial birds can provide the parents with information about the nestlings' nutritional needs and thus influence the parental feeding rate. In a series of four experiments, the stimulus situation encountered by great tits on their feeding visits to the brood was manipulated to explore its effect on feeding rate.A higher feeding rate was observed under the following conditions: (1) after a period of food deprivation, as compared with both normal conditions and satiation through artificial feeding; (2) in periods when recorded begging calls were played during feeding visits, as compared with control periods; (3) after temporary removal from the nest of heavier, as compared with lighter, siblings. The lighter nestlings in the brood benefitted more —in terms of gain in weight — from the increase in parental feeding rate following the playing of begging calls than did the heavier nestlings. Differences in weight spread within broods did not affect the amount of food the parents brought.We conclude that parental feeding rate is affected not simply by the begging of the hungriest nestling, but rather by the behaviour of all the nestlings in the brood, which makes possible an adjustment of the feeding rate to the average hunger level of the brood. The effects of hatching asynchrony and sibling competition on parental feeding rate are discussed.  相似文献   

16.
More than a half century ago, the British ornithologist David Lack suggested that parent birds may use brood reduction to track uncertain food, a process facilitated by the asynchronous hatching of their young. Lack sketched the logic of asymmetric sibling rivalry: the phenotypic handicap imposed upon last-hatched marginal offspring renders their growth and survival conditional upon uncertain ecological conditions while buffering first-hatched core offspring from the inimical effects of overcrowding during periods of stringency. Though subjected to numerous indirect tests in short-term studies, the central prediction of Lack's hypothesis - that parents use marginal offspring to track unpredictable brood-rearing conditions and thus achieve a secondary adjustment of clutch size - has never been tested directly. Here we present the results of a 7-year study of marsh-nesting red-winged blackbirds (Agelaius phoeniceus) showing that (1) brood size tracks interannual variability in growth and survival of nestlings, (2) the growth and mortality of marginal but not core offspring is contingent upon stochastic environmental conditions (mean air temperature) during brood rearing, (3) the mortality of marginal but not core offspring is strongly affected by developmental uncertainty in the form of both experimental and natural alterations of brood size, (4) the phenotypic handicap of hatching asynchrony buffers core offspring from poor growth conditions, but (5) its effects upon marginal nestlings are reversible when growth conditions are favourable and especially when brood size is reduced either experimentally or via hatching failure. The presence of marginal offspring ensures that blackbird parents are not left with a too small brood when brood-rearing conditions are favourable. Parents create two castes of progeny: marginal offspring that are strongly affected by both ecological and developmental stochasticity, and core offspring that are not.  相似文献   

17.
Many birds hatch their offspring asynchronously, and the adaptive significance of this trait, if any, is controversial. David Lack suggested long ago that by facilitating brood reduction when resources are scarce, hatching asynchrony provides relief from the effects of overcrowding. Some field workers interpret this to mean that the growth and survival of survivors should rise following partial brood loss. Here we show in a 6-year study of red-winged blackbirds (Agelaius phoeniceus) that the presence or absence of marginal offspring in experimentally manipulated broods had virtually no effect upon the growth of core offspring, whereas alterations of the size of core brood had strong and significant effects. Nestling growth was, not surprisingly, slower in broods with partial brood loss. Intriguingly, marginal offspring showed significantly greater variation in mass. Core offspring are less sensitive to, but not exempt from, the inimical effects of resource shortfall than are marginal offspring. The phenotypic handicap appears to marginal offspring a caste of high-variance progeny whose fitness prospects rest upon levels of parental input (stochastic resources) and the size of the core brood (stochastic development). Received: 21 June 1999 / Revised: 5 June 2000 / Accepted: 25 June 2000  相似文献   

18.
Empirical relationships between parentage and male parental care are commonly interpreted in the context of life-history models that consider increased offspring survivorship as the only benefit of paternal effort. However, indirect benefits associated with male care can also influence a male's response to cuckoldry: if females allocate paternity according to their prior experience with male parental care, it may pay for males to provision extra-pair young in early broods. Here, I assess the relationship between first-brood parentage and paternal care in a population of Savannah sparrows (Passerculussandwichensis) where a male's fertilization success in the second brood appears to be influenced by his prior parental performance. Based on the multi-locus DNA fingerprinting of 17 first broods, male feeding effort was influenced by parentage (percent of brood resulting from within-pair fertilizations) but not by brood size, male mating status (monogamous versus polygynous), timing of breeding (hatching date), structural size (wing length) or condition (mass). Males provided more care to broods that contained few within-pair young. This result supports the idea that males provision young to increase their future mating success, but alternative hypotheses involving male quality and timing of breeding cannot be excluded. Received: 13 August 1996 / Accepted after revision: 22 February 1997  相似文献   

19.
Parent blue-footed boobies suppress siblicidal behavior of offspring   总被引:5,自引:3,他引:2  
Behaviorally dominant nestlings routinely kill sibling nestmates in blue-footed booby (Sula nebouxii) broods during periods of food shortage. Previous work demonstrated that these dominant, first-hatching “A-chicks” regulate the lethality of their behavior towards subordinate, second-hatching “B-chicks,” showing tolerance towards B-chicks except during chronic food shortages. Siblicide by A-chicks usually occurs after the hatchling stage. Results of an interspecific cross-fostering experiment indicated that A-chicks also attempt siblicide shortly after hatching, but parents apparently exert control over these attempts, and thwart them, when chicks are young. Theory predicts selection for such regulation in siblicidal birds that are likely to experience genetic parent-offspring conflict over the value of subordinant nestlings; our evidence of post-hatching parental regulation is consistent with that prediction. Received: 6 June 1998 / Accepted after revision: 12 July 1998  相似文献   

20.
A total of 250 nestboxes were arranged in five plots in a suburban area of Budapest, Hungary (19°04E, 47°41N). In each plot, 25 were placed at 50 m intervals to simulate solitary breeding and 25 3–5 m apart to simulate colonial breeding. Length of nest building period, feeding frequency, nestling mortality, nestlings' diet, productivity and parental condition were compared for colonial and solitary breeding tree sparrows Passer montanus. Parents with long nest-building periods, including the majority of first-year females, produced fewer young than parents which built over short periods. Parents fed nestlings morefrequently and nestlings had lower mortality in second than first broods; whether or not a third brood was reared was determined by the costs invested in first and second broods. Females that laid a third clutch had reared fewer young in first and second broods and were heavier than females that reared many young in two broods. Colonial birds had higher feeding frequencies, more similar diets and suffered lower nestling mortality than solitary parents for first broods, but they fed less frequently, diets were less similar, and nestling mortality was higher in second and third broods. It is suggested that colonial breeders benefited from the social stimulation of simultaneous feeding in first broods, but the advantage of synchronicity in feeding declined in second broods and the sparser breeding spacing of solitary parents was more advantageous for feeding in second and third broods. Birds that changed nest spacing between broods had fed nestlings less frequently and had higher nestling mortality before changing than birds which retained their spacing. Parents which changed from colonies to solitary nests fed more frequently with lower nestling mortality in the next brood than parents which retained colonial nests for their second (and third) brood. Solitary parents did not show such a relationship. The rearing of three broods caused higher weight loss in colonial than solitary parents.Correspondence to: L. Sasvári  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号