首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract: Captive rearing and translocation are often used concurrently for species conservation, yet the effects of these practices can interact and lead to unintended outcomes that may undermine species’ recovery efforts. Controls in translocation or artificial‐propagation programs are uncommon; thus, there have been few studies on the interacting effects of these actions and environmental conditions on survival. The Columbia River basin, which drains 668,000 km2 of the western United States and Canada, has an extensive network of hydroelectric and other dams, which impede and slow migration of anadromous Pacific salmon (Oncorhynchus spp.) and can increase mortality rates. To mitigate for hydrosystem‐induced mortality during juvenile downriver migration, tens of millions of hatchery fish are released each year and a subset of wild‐ and hatchery‐origin juveniles are translocated downstream beyond the hydropower system. We considered how the results of these practices interact with marine environmental conditions to affect the marine survival of Chinook salmon (O. tshawytscha). We analyzed data from more than 1 million individually tagged fish from 1998 through 2006 to evaluate the probability of an individual fish returning as an adult relative to its rearing (hatchery vs. wild) and translocation histories (translocated vs. in‐river migrating fish that traveled downriver through the hydropower system) and a suite of environmental variables. Except during select periods of very low river flow, marine survival of wild translocated fish was approximately two‐thirds less than survival of wild in‐river migrating fish. For hatchery fish, however, survival was roughly two times higher for translocated fish than for in‐river migrants. Competition and predator aggregation negatively affected marine survival, and the magnitude of survival depended on rearing and translocation histories and biological and physical conditions encountered during their first few weeks of residence in the ocean. Our results highlight the importance of considering the interacting effects of translocation, artificial propagation, and environmental variables on the long‐term viability of species.  相似文献   

2.
In many animals, territoriality will arise or cease depending on environmental factors such as intruder rate and resource availability. We investigated the effect of rearing environment on territorial behaviour in ~1.5-month-old brown trout. In the laboratory, wild-caught (reared at a low density) and hatchery-reared (high density) trout were allowed to defend a territory against a size-matched intruder reared in the same or the other environment. Because territorial behaviour should be relaxed at high-rearing densities, we hypothesized that hatchery-reared trout should value their territories less and therefore invest less in defence compared with wild-caught trout. However, in all cases, territory owners were more likely to win the contest and hatchery-reared trout were just as likely as wild-reared to win mixed contests. Furthermore, pairs of hatchery-reared trout initiated contests sooner, fought longer and were more aggressive during the contest compared with pairs of wild trout. When hatchery-reared owners met wild intruders, the contest ended sooner compared with when the roles were reversed. We conclude that territorial behaviour in brown trout is largely innate, but that the hatchery environment has promoted more aggressive individuals. These results suggest that hatchery-reared trout invest more time and energy to obtain the same contest success as wild trout. In conclusion, the lack of experience of territorial defence in a high-density rearing environment seems to reduce the efficiency of territorial behaviour. In turn, this may have negative consequences for the performance of released hatchery fish in the wild.  相似文献   

3.
Abstract:  Population supplementation programs that release captive-bred offspring into the wild to boost the size of endangered populations are now in place for many species. The use of hatcheries for supplementing salmonid populations has become particularly popular. Nevertheless, whether such programs actually increase the size of wild populations remains unclear, and predictions that supplementation fish drag down the fitness of wild fish remain untested. To address these issues, we performed DNA-based parentage analyses on almost complete samples of anadromous steelhead ( Oncorhynchus mykiss ) in the Hood River in Oregon (U.S.A.). Steelhead from a supplementation hatchery (reared in a supplementation hatchery and then allowed to spawn naturally in the wild) had reproductive success indistinguishable from that of wild fish. In contrast, fish from a traditional hatchery (nonlocal origin, multiple generations in hatcheries) breeding in the same river showed significantly lower fitness than wild fish. In addition, crosses between wild fish and supplementation fish were as reproductively successful as those between wild parents. Thus, there was no sign that supplementation fish drag down the fitness of wild fish by breeding with them for a single generation. On the other hand, crosses between hatchery fish of either type (traditional or supplementation) were less fit than expected, suggesting a possible interaction effect. These are the first data to show that a supplementation program with native brood stock can provide a single-generation boost to the size of a natural steelhead population without obvious short-term fitness costs. The long-term effects of population supplementation remain untested.  相似文献   

4.
Fishery scientists and managers are investigating the feasibility of enhancing annual recruitment to the northern Atlantic cod (Gadus morhua L.) stock complex off Labrador and northeastern Newfoundland through the release of farmed fish back into the sea. Release of newly matured fish and adults with farm-advanced fecundity would increase the spawning biomass. Enhancement efforts might be measurably successful in major bays that are year-round habitats for cod. To determine if farmed cod would remain and spawn in Trinity Bay, 14 fish with surgically implanted transmitters were released in November 1992. Sonic tracking confirmed that farmed cod released on the western side of Trinity Bay overwintered within the bay, and integrated with wild cod approaching spawning condition in April 1993. Blood plasma antifreeze levels confirmed that these wild cod had overwintered inshore in subzero waters. A spawning aggregation was found in July 1993, providing evidence that northern cod reproduce in Newfoundland bays. These findings suggest that it may be possible to increase the number of cod spawning inshore through the release of farmed fish.  相似文献   

5.
Abstract:  Hatcheries have been built and operated to buffer salmon and trout populations from overfishing and to compensate for habitat lost or degraded by human activities. These facilities are now so prevalent that in some cases hatchery-produced salmon outnumber salmon produced in the wild. By default, this makes them an important component in the current ecology and evolution of salmonids. Hatcheries differ from natural environments in many ways, and among the most fundamental is the necessity that humans select fish for breeding instead of allowing natural processes of mate choice and competition. We examined the mating system for steelhead trout ( Oncorhynchus mykiss ) at Forks Creek Hatchery in southwest Washington and investigated factors affecting selection of individual steelhead for spawning by the hatchery staff. Despite efforts by the staff to not spawn selectively, data on steelhead spawned over 7 years revealed selection for large adult body size and early reproductive timing and a tendency for size-assortative mating (i.e., large with large). Selection on size was related to selection on reproductive timing because early returning fish tended to be larger than those returning later. To improve the fitness of both hatchery fish destined to spawn in the wild and hatchery fish designated to be spawned in the hatchery, a better understanding of factors associated with the range of reproductive success and mate-choice mechanisms in the wild is vital. This knowledge may then be applied to artificial propagation programs designed for conservation or enhancement.  相似文献   

6.
Many prey species have a genetic predisposition to recognise and respond to predators and can fine-tune their anti-predator behaviour following appropriate experience. Although the Trinidadian guppy ( Poecilia reticulata) has become a model species for the investigation of adaptive behaviour, the extent to which experience mediates predator recognition remains unclear. In this study, we examined the effects of relaxed predation pressure on patterns of anti-predator behaviour in populations differing in evolutionary history. The anti-predator behaviour of wild- and laboratory-born guppies from high- and low-predation localities in Trinidad were compared using three models resembling Crenicichla alta, a dangerous guppy predator, Aequidens pulcher, a less dangerous piscivore, and a snake. Snakes are not known to prey on guppies in Trinidad. Specifically, the following predictions were tested: (1) wild caught fish from the high-predation localities (where guppies co-occur with C. alta and A. pulcher) would respond to the three models according to their perceived level of threat, whereas guppies from the low-predation site would show a reduced response to all of the predator models; (2) high-predation laboratory-reared fish would display a reduced but qualitatively similar response to their wild counterparts; and (3) there would be no behavioural differences between wild- and laboratory-reared low-predation fish. In accordance with these predictions, the results revealed that wild fish originating from high-predation sites responded more strongly to the models than fish from low-predation sites. When reared in the laboratory, guppies from the high-predation population showed a reduced response compared to their wild-caught counterparts, but there was no difference in the behaviour of wild- and laboratory-reared low-predation fish. Model type affected predator inspection behaviour but not schooling tendency, and both wild- and laboratory-reared guppies were more wary of the fish models than the snake. These results suggest that early experience differentially mediates the anti-predator responses of fish from high-risk localities.  相似文献   

7.
Summary This paper documents differences in seasonal time of river ascent and descent, and instream behavior of adult wild and sea-ranched Atlantic salmon (Salmo salar) of the Norwegian River Imsa stock during the period 1981–1989. Wild fish use River Imsa as a nursery, and at an age of 2 years most of them migrate to the sea as smolts. The sea ranched fish are hatchery reared offspring of the River Imsa stock and are released as smolts at the mouth of the river. They are thus deprived of juvenile river life and a downstream smolt migration. Wild and sea ranched salmon feed for 1 or more years in the Norwegian Sea before homing as spawners. Both groups returned simultaneously to coastal Norway, but sea ranched fish ascended the river later and descended sooner after spawning than wild fish. All wild females and almost all wild males (96.2%) spawned in the river, whereas 13.5% and 36.7%, respectively, of the mature sea-ranched females and males left the river unspawned. The annual number, but not the proportion, of unspawned fish increased with increasing density of adult salmon in the river. Unspawned females were medium sized and small (45–70 cm); unspawned males were medium sized and large (50–90 cm). Independent of the density of spawners in the river, sea ranched fish moved up- and downstream the river more often than wild fish. More than 20% of the sea-ranched salmon and less than 1% of the wild salmon passed a trap 100 m above the river outlet more than once in each direction during the same spawning reason. Moreover, sea-ranched salmon were about twice as often seriously injured during spawning as wild fish. Lack of juvenile experience from the river may be the main reason for the behavioral differences between sea-ranched and wild fish. Offprint requests to: B. Jonsson  相似文献   

8.
In order to estimate growth rates based on biochemical indices of the liver of wild Japanese flounder (Paralichthys olivaceus), juveniles were reared at six ration levels (0, 0.5, 2, 4, 6 and 8% body weight day−1) in the laboratory for 14 days, and the relationship between their growth rates and biochemical indices (RNA/DNA, protein/DNA, triglyceride/DNA, phospholipid/DNA and cathepsin D activities) were determined. Positive and approximately linear relationships were seen between growth rates and the indices of RNA/DNA, protein/DNA and phospholipid/DNA. The triglyceride/DNA ratio decreased with increasing growth rates up to approximately 1% body weight day−1, then increased linearly with increasing growth rates. There was no significant correlation between growth rates and cathepsin D activity, and the highest values were obtained in the starved fish. Compared with laboratory-reared specimens, wild specimens of similar sizes were found to have significantly larger livers. The RNA/DNA, protein/DNA and phospholipid/DNA ratios of wild specimens fell in a broad range between ration groups of reared juveniles. The protein/DNA ratios of wild specimens were low and outside the range of the reared juveniles at six ration levels. In contrast, the levels of cathepsin D activity of wild fish were highest compared to the reared fish. Estimated growth rates of wild fish from the RNA/DNA, protein/DNA and phospholipid/DNA regressions obtained from the rearing experiment were 1.66, −1.74 and 0.10% day−1, respectively. Based on our results, the RNA/DNA index may be regarded as the most valid and reliable growth estimator. It is noted that the larger liver size, the lower liver protein/DNA ratio and the unexpectedly high level of cathepsin D activities of wild specimens found in this study may reflect the different metabolic conditions of fish reared in the laboratory compared to those collected in the field. Received: 29 February 2000 / Accepted: 26 August 2000  相似文献   

9.
Recruitment of capelin in the Barents Sea fail when juvenile herring and cod are abundant and the potential for feeding competition of wild sympatric capelin and herring larvae and small cod juveniles were investigated. The frequency of gut evacuation after capture of capelin larvae were also studied in mesocosms. Small capelin larvae (<35 mm length) fed on small prey including phytoplankton, invertebrate eggs and nauplii, bivalves, other invertebrate larvae and small copepods. Calanus copepodites were only observed in large capelin larvae (>26 mm length). Calanus copepodites were the major food sources for contemporary herring larvae (25–35 mm length) and Calanus and euphausiids were the major prey for small juvenile herring (37–60 mm length) and cod (18–40 mm length). Capelin larvae reared in mesocosms evacuated the guts shortly after capture. Capelin larvae had a smaller mouth and fed on smaller prey than herring and cod of the same length. This implies that the small capelin larvae, in contrast to sympatric small herring and cod, are not tightly linked to the food chain involving Calanus and euphausiids. Thus, exploitative competition between capelin larvae and planktivorous fish that rely on Calanus and euphausiids in the Barents Sea may be relaxed.  相似文献   

10.
Management and Recovery Options for Ural River Beluga Sturgeon   总被引:1,自引:0,他引:1  
Abstract: Management of declining fisheries of anadromous species sometimes relies heavily on supplementation of populations with captive breeding, despite evidence that captive breeding can have negative consequences and may not address the root cause of decline. The beluga sturgeon (Huso huso), a species threatened by the market for black caviar and reductions in habitat quality, is managed through harvest control and hatchery supplementation, with an emphasis on the latter. We used yield per recruit and elasticity analyses to evaluate the population status and current levels of fishing and to identify the life‐history stages that are the best targets for conservation of beluga of the Ural River. Harvest rates in recent years were four to five times higher than rates that would sustain population abundance. Sustainable rates of fishing mortality are similar to those for other long‐lived marine species such as sharks and mammals. Yield per recruit, which is maximized if fish are first harvested at age 31 years, would be greatly enhanced by raising minimum size limits or reducing illegal take of subadults. Improving the survival of subadult and adult females would increase population productivity by 10 times that achieved by improving fecundity and survival from egg to age 1 year (i.e., hatchery supplementation). These results suggest that reducing mortality of subadults and adult wild fish is a more effective conservation strategy than hatchery supplementation. Because genetics is not factored into hatchery management practices, supplementation may even reduce the viability of the beluga sturgeon.  相似文献   

11.
Consistent differences in human behaviour are often explained with reference to personality traits. Recent evidence suggests that similar traits are widespread across the entire animal kingdom and that they may have substantial fitness consequences. One of the major components of personality is the shyness–boldness continuum. Little is known about the relative contributions of genes and the environment in the development of boldness in wild animal populations. Here, we bred wild-caught fish (Brachyraphis episcopi) collected from regions of high- and low-predation pressure, reared their offspring in the laboratory under varying conditions and tested boldness utilising an open-field paradigm. First-generation laboratory-reared fish showed similar behaviour to their wild parents suggesting that boldness has a heritable component. In addition, repeated chasing with a net increased boldness in both high- and low-predation offspring, showing that boldness is also heavily influenced by life experiences. Differences between males and females were also sustained in the laboratory-reared generation indicating that sex differences in boldness are also heritable. We discuss these results with reference to the potential underlying genetic and hormonal mechanisms as well as the environmental influences that may be responsible for expression of boldness in wild animals.  相似文献   

12.
Most animals will reduce foraging activity in the presence of a predatory threat. However, little is known about the onset of this decision-making ability during the early life stages of fishes, and how the trade-off between foraging and predator-avoidance may be affected by changes in metabolic demand during ontogeny. To examine these issues, the foraging behaviour of larval shorthorn sculpin Myoxocephalus scorpius was monitored during visual exposure to a predatory threat (juvenile Atlantic cod, Gadus morhua) throughout development at 3°C (March–April, 2004). Larvae did not respond to predatory exposure during the first week post-hatch, but thereafter showed drastic reductions in foraging activity when exposed to predators. During early development, the mass-specific routine metabolism of shorthorn sculpin larvae displayed a triphasic ontogeny and peaked during metamorphosis. This high mass-specific metabolic demand could make reduced foraging under predation threat very costly during this stage of development. To further investigate this possibility, additional experiments were performed (March–April, 2005) where larvae were reared with visual exposure to predators for 6 h day−1 during the feeding period. At 7-week post-hatch, larvae exposed to predators were smaller (wet mass and SL), showed decreased levels of whole-body lipids and certain fatty acids, and experienced higher rates of mortality as compared to control larvae. In environments where abundant predators cause larval fish to reduce their foraging rate, growth and survival of larvae may be negatively affected. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Harvest restrictions and stock enhancement are commonly proposed management responses for sustaining degraded fisheries, but comparisons of their relative effectiveness have seldom been considered prior to making policy choices. We built a population model that incorporated both size-dependent harvest restrictions and stock enhancement contributions to explore trade-offs between minimum length limits and stock enhancement for improving population sustainability and fishery metrics (e.g., catch). We used a Murray cod Maccullochella peelii peelii population as a test case, and the model incorporated density-dependent recruitment processes for both hatchery and wild fish. We estimated the spawning potential ratio (SPR) and fishery metrics (e.g., angler catch) across a range of minimum length limits and stocking rates. Model estimates showed that increased minimum length limits were much more effective than stock enhancement for increasing SPR and angler catches in exploited populations, but length limits resulted in reduced harvest. Stocking was predicted to significantly increase total recruitment, population sustainability, and fishery metrics only in systems where natural reproduction had been greatly reduced via habitat loss, fishing mortality was high, or both. If angler fishing effort increased with increased fish abundance from stocking efforts, fishing mortality was predicted to increase and reduce the benefits realized from stocking. The model also indicated that benefits from stock enhancement would be reduced if reproductive efficiency of hatchery-origin fish was compromised. The simulations indicated that stock enhancement was a less effective method to improve fishery sustainability than measures designed to reduce fishing mortality (e.g., length limits).  相似文献   

14.
Summary Preference behaviour patterns of wild brown trout (Salmo trutta L.) towards odours in their home-stream water were measured in laboratory experiments. Stream-dwelling, sexually mature trout were captured by electrofishing in different sections of a stream, transferred to a hatchery, and exposed to water sampled from various stream sections and to neutral water, scented by fish captured in the same stream sections. The fish preferred stream water originating from their home stream over that from a neighboring stream. Among water samples from their home stream, they preferred water from the home sections over water from distant sections both upstream and downstream. In most cases they also preferred neutral water scented by other mature fish captured in their home section over water scented by fish from the distant sections. Trout from two neighboring stream sections showed indifferent responses towards water and fish from the adjacent section. The attractive properties of stream water sampled from home sections coincided with those obtained with neutral water scented by fish from the same sites. Accordingly, the attractive components in stream water may be intraspecific odours derived from separate spawning demes of fish present in local areas of the stream.  相似文献   

15.
The composition of fatty acids in total lipids and in phosphatidylcholine and phosphatidylethanolamine in the heart tissue from two reared stocks of cod (Gadus morhua L.) was determined by a chemometric method, consisting of methanolysis, gas chromatography of the resulting fatty acid methyl esters and multivariate statistical treatment, by principal component analysis, of the analytical data. The two reared stocks of cod from the Faroe Bank and the Faroe Plateau had significantly different fatty acid profiles in all three groups of lipids. This difference is expected to be purely genetic and free of biotic and abiotic impacts on the fatty acid profiles. The observed clear-cut distinction suggests that the method may have the potential to discriminate between the corresponding wild stocks, although possible variation in the fatty acid profile caused by internal and environmental factors must be better understood. Received: 6 August 1999 / Accepted: 6 January 2000  相似文献   

16.
Food limitation is likely to be a source of mortality for fish larvae in the first few weeks after hatching. In the laboratory, we analyzed all aspects of foraging in cod larvae (Gadus morhua Linnaeus) from 5 to 20 d post-hatching using protozoa (Balanion sp.) and copepod nauplii (Pseudodiaptomus sp.) as prey. A camera acquisition system with two orthogonal cameras and a digital image analysis program was used to observe patterns of foraging. Digitization provided three-dimensional speeds, distances, and angles for each foraging event, and determined prey and fish larval head and tail positions. Larval cod swimming speeds, perception distances, angles, and volumes increased with larval fish size. Larval cod swam in a series of short intense bursts interspersed with slower gliding sequences. In 94% of all foraging events prey items were perceived during glides. Larval cod foraging has three possible outcomes: unsuccessful attacks, aborted attacks, and successful attacks. The percentage of successful attacks increased with fish size. In all larval fish size classes, successful attacks had smaller attack distances and faster attack speeds than unsuccessful attacks. Among prey items slowly swimming protozoans were the preferred food of first-feeding cod larvae; larger larvae had higher swimming speeds and captured larger, faster copepod nauplii. Protozoans may be an important prey item for first-feeding larvae providing essential resources for growth to a size at which copepod nauplii are captured. Received: 20 April 1999 / Accepted: 12 January 2000  相似文献   

17.
Development of the Crassostrea gigas gill was studied in order to better understand the feeding biology of early life stages, identify potentially critical developmental stages which may influence rearing success or recruitment to wild populations, and shed light on the evolution of the basic bivalve gill types. Larvae and juveniles were reared in an experimental hatchery, and larger specimens were obtained from a commercial hatchery. Specimens were relaxed, fixed, dried, and observed using scanning electron microscopy (SEM). The right and left gills developed symmetrically, via a “cavitation–extension” process from the gill buds. The inner demibranchs developed first (V-stage, 0.29–2.70 mm), in a sequential postero-anterior series of homorhabdic filaments. The outer demibranchs developed later (W-stage, from 2.70 mm), also as homorhabdic filaments, synchronously along the gill axis. The principal filaments (PF) developed from the progressive fusion of three ordinary filaments (OF), at a size of 7.50 mm, and the consequent plication was accentuated by the formation of extensive tissue junctions. Effective filament number (number of descending and ascending filaments) showed a marked discontinuity at the transition from the V- to the W- stage of the gill. Filament ciliation showed several important changes: establishment of OF ciliation in the homorhabdic condition (2.70 mm), ciliary de-differentiation of the PF in the heterorhabdic condition (7.50 mm), and establishment of a latero-frontal cirri length gradient from the plical crest to the PF base. Reversal of direction of ciliary beat is also necessary prior to adult functioning of the PF. Three major transitions were identified in C. gigas gill development, each potentially important in rearing success or wild population recruitment: (1) transition from velum to gill at settlement, (2) transition from a V- to a W-shaped gill (2.70 mm), and (3) transition from the homorhabdic to the heterorhabdic condition (7.50 mm). Complete gill development was much more prolonged than in species previously studied. The major ontogenetic differences between the C. gigas heterorhabdic pseudolamellibranch gill and the pectinid heterorhabdic filibranch gill suggest that the heterorhabdic condition evolved independently in these two bivalve families.  相似文献   

18.
The frequency of low O2 (hypoxia) has increased in coastal marine areas but how fish avoid deleterious water masses is not yet clear. To assess whether the presence and oxygen pressure (PO2) level of an O2 refuge affects the hypoxia avoidance behaviour of fish, individual Atlantic cod (Gadus morhua L.) were exposed to a range of O2 choices in a 2-way choice chamber at 11.4°C over two different experiments. Cod in the first experiment were allowed access to a fixed O2 refuge (fully air-saturated seawater) whilst oxygen pressure (PO2) on the other side was reduced in steps to a critically low level, i.e. 4.3 kPa—a point where cod can no longer regulate O2 consumption. Under these conditions, cod did not avoid any level of hypoxia and fish swimming speed also remained unchanged. In contrast, strong avoidance reactions were exhibited in a second experiment when fish were again exposed to 4.3 kPa but the safety, i.e. PO2, of the refuge was reduced. Fish not only spent less time at 4.3 kPa as a result of fewer sampling visits but they also swam at considerably slower speeds. The presence of an avoidance response was thus strongly related to refuge PO2 and it is unlikely that cod, and possibly other fish species, would enter low O2 to feed in the wild if a sufficiently safe O2 refuge was not available. It is therefore hypothesized that the feeding range of fish may be heavily compressed if hypoxia expands and intensifies in future years.  相似文献   

19.
The environment is profoundly important in shaping many aspects of animal phenotype, including courtship and mating behaviours. Courtship displays rely upon the transmission of visual information from the signaller to the receiver, which means they are likely to be less effective in visually poor conditions such as at low light or in turbid ecosystems. One might therefore predict that in visually poor environments it would be beneficial for individuals to plastically adjust their mating behaviour to maximise mating success. Here, we investigate the impact of the developmental and current visual environment (light intensity) upon male mating behaviour in the Trinidadian guppy Poecilia reticulata. Male guppies have two different mating tactics: They can court females with a visual sigmoid display or attempt to circumvent female choice by attempting a non-consensual copulation (gonapodium thrust). We reared juvenile guppies in low light and relatively high light intensities for 5 months before observing individual males for mating behaviour in both light conditions. We found that the current light environment is important in determining the frequency of both sigmoidal courtship displays and non-consensual copulation attempts. Males increase the frequency of sigmoidal displays at relatively high light and increase non-consensual mating attempts at low light, suggesting that males compensate for poor visual conditions via an adjustment in tactics. We also find a significant correlation in courtship effort between the different light environments, suggesting that there is individual consistency across time and context for this trait. Developmental environment was less important. However, we found that fish reared at lower light intensities continued to employ sigmoidal displays despite the poor current visual environment. Our data show that male mating behaviour is phenotypically plastic in response to recent light environment. This may have implications for understanding how animals cope with anthropogenic environmental change.  相似文献   

20.
The time periods from exhausion of the yolk to the age of irreversible starvation for Pacific herring Clupea harengus pallasi larvae were 8.5, 7.0 and 6.0 d at 6°, 8° and 10°C, respectively. These periods are within the range perviously measured for Atlantic herring larvae and other temperature zone fish species; they are long compared to the periods for tropical species. The variation in the length of this period is due almost entirely to temperature; the natural logarithm of the time period from fertilization to irreversible starvation is highly correlated (r=0.91) with the mean rearing temperature for 25 species of pelagic marine fish larvae. The rates of growth and mortality, measured for 26 experimental populations of Pacific herring larvae reared at 6°, 8° and 10°C and ten ages of delayed first feeding, decreased and increased, respectively with increasing age of first feeding and increasing temperature. These rates, adjusted for the effects of rearing conditions, were compared with the rates for natural populations of herring larvae. Growth is generally faster in the sea than in experimental enclosures. Two of the eleven estimates of natural mortality rate were high enough to indicate possible catastrophic mass starvation. This is consistent with Hjort's critical period concept of year class formation and it suggests that mass starvation occurs in 18 to 36% of the natural populations of first feeding herring larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号