首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Understanding physiological and environmental variables that initiate sexual maturity would provide fundamental information on life history dynamics. The aim of this study was to test the usefulness of the common circumnuclear ring (CNR), an oocytic structure similar to the Balbiani body, which appears just prior to oocyte development as a predictor of first maturation in Atlantic herring (Clupea harengus). The relative roles of physiology (e.g. fat) and photoperiod as triggers of maturation were also investigated. Samples were collected in May 2008 (72°26′–73°84′N/11°26′–18°40′E) and February 2009 (56°12′–59°45′N/00°25′–03°06′W). These data suggested that thresholds in body size may influence the decision to mature. We also found that short days (winter solstice) may be the photoperiod trigger for a first-decision window for both Norwegian spring-spawning (NSS) and North Sea autumn-spawning (NSAS) herring. The second-decision window for NSAS herring maturation appears to be triggered by longer days (spring equinox), while a decreasing rate of day lengthening may trigger NSS herring maturation. So, photoperiodic cycle is a key determinate of the timing of maturation in Atlantic herring.  相似文献   

2.
Carbon and nitrogen stable isotope ratios of Japanese anchovy (Engraulis japonicus) and their stomach contents were examined and compared among various regions around Japan. Geographical variations in the isotope ratios were found between inshore and Pacific offshore regions. While most of the anchovy samples had isotope ratios around −17.6‰ for δ13C and 10.0‰ for δ15N as median values, higher (more enriched) isotope values were found in the anchovy sampled from inshore regions. On the contrary, lower (more depleted) values were found mostly in the anchovy from the Pacific offshore region including the Kuroshio Extension and Kuroshio-Oyashio transition zones. Higher carbon isotope ratios in the inshore regions may reflect a carbon source from benthic primary producers in addition to phytoplankton possibly through the consumption of the larvae of benthic organisms such as bivalves or decapods, which were found in the stomach contents of the inshore anchovy. Variations in the nitrogen isotope ratio may reflect not only differences in the trophic level of prey species, but also variations in the baseline level of food webs. Stable isotope ratios are potentially a useful tool for understanding the stock/population structure and migration of anchovy. The present findings indicate the potential importance of the “inshore–offshore” variations in the biology of Japanese anchovy populations in the northwestern Pacific waters.  相似文献   

3.
The central California coast is a highly productive, biodiverse region that is frequently affected by the toxin-producing dinoflagellate Alexandrium catenella. Despite the consistent presence of A. catenella along our coast, very little is known about the movement of its toxins through local marine food webs. In the present study, we investigated 13 species of commercial finfish and rock crabs harvested in Monterey Bay, California for the presence of paralytic shellfish toxins (PSTs) and compared them to the presence of A. catenella and PSTs in sentinel shellfish over a 3-year period. Between 2003 and 2005, A. catenella was noted in 55% of surface water samples (n = 307) and reached a maximum concentration of 17,387 cells L−1 at our nearshore site in Monterey Bay. Peak cell densities occurred in the month of July and were associated with elevated shellfish toxicity in the summers of 2004 and 2005. When A. catenella was present, particulate PSTs were detected 71% of the time and reached a maximum concentration of 962 ng STXeq L−1. Of the 13 species tested, we frequently detected PSTs in Pacific sardines (Sardinops sagax; maximum 250 μg STXeq 100 g−1), northern anchovies (Engraulis mordax; maximum 23.2 μg STXeq 100 g−1), brown rock crabs (Cancer antennarius; maximum 49.3 μg STXeq 100 g−1) and red rock crabs (C. productus; 23.8 μg STXeq 100 g−1). PSTs were also present in one sample of Pacific herring (Clupea pallas; 13.3 μg STXeq 100 g−1) and one sample of English sole (Pleuronectes vetulus; 4.5 μg STXeq 100 g−1), and not detected in seven other species of flatfish tested. The presence of PSTs in several of these organisms reveals that toxins produced by A. catenella are more prevalent in California food webs than previously thought and also indicates potential routes of toxin transfer to higher trophic levels. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The trophic ecology of Octopus vulgaris paralarvae collected in 2008 off the Ría de Vigo, NW Spain (42° 12.80′ N–9° 00.00′ W), was approached by both morphological and molecular methods. External digestion of prey and posterior suction of the liquefied contents by wild O. vulgaris paralarvae made the morphological identification of gut contents impossible. Thus, a PCR-based method using group-specific primers was selected to identify prey consumed by O. vulgaris paralarvae in the pelagic realm. The mitochondrial ribosomal 16S gene region was chosen for designing group-specific primers, which targeted a broad range of crustaceans and fishes but avoided the amplification of predator DNA. These primers successfully amplified DNA of prey by using a semi-nested PCR-based approach and posterior cloning. Homology search and phylogenetic analysis were then conducted with the 20 different operational taxonomic units obtained to identify the putative organisms ingested. The phylogenetic analysis clustered ingested prey into 12 families of crustaceans (11 belonging to the order Decapoda and 1 to the order Euphausiacea) and two families of fishes (Gobiidae and Carangidae). According to the Czekanowski’s Index (CI), the trophic niche breadth of O. vulgaris paralarvae is low (CI = 0.13), which means that these paralarvae are specialist predators at least during the first weeks of their life cycle. It is the first time that natural prey has been identified in O. vulgaris paralarvae collected from the wild, and such knowledge may be critical to increasing the survival of O. vulgaris hatchlings in captivity, a goal that has been actively pursued since the 1960s by aquaculture researchers.  相似文献   

5.
Within Monterey Bay, California, USA, the food web transfer of domoic acid (DA), a neurotoxin produced by diatoms of the genus Pseudo-nitzschia, has led to major mortality events of marine mammals and birds. Less visible, and less well known, is whether invertebrates and fish associated with the benthos are also affected by blooms of DA-producing Pseudo-nitzschia spp. This study examines the presence of DA in benthic flatfish offshore of Davenport, California, (37°0′36″N, 122°13′12″W) and within Monterey Bay, California (36°45′0″N, 122°1′48″W), including species that feed primarily in the sediment (benthic-feeding) and species that feed primarily in the water column (benthopelagic-feeding). Flatfish caught between 10 December 2002 and 17 November 2003 at depths of 30–180 m had concentrations of DA in the viscera ranging from 3 to 26 μg DA g−1 of viscera. Although the DA values reported are relatively low, benthic-feeding flatfish were frequently contaminated with DA, especially as compared with the frequency of contamination of flatfish species that feed in the water column. Furthermore, on days in which both benthic-feeding and benthopelagic-feeding flatfish were collected, the former had significantly higher concentrations of DA in the viscera. Curlfin turbot, Pleuronicthys decurrens, the flatfish with both the highest level and frequency of DA contamination, are reported to feed exclusively on polychaetes, suggesting that these invertebrates may be an important vector of the toxin in benthic communities and may pose a risk to other benthic-feeding organisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Growth and diet were compared among larvae of Japanese anchovy Engraulis japonicus, Japanese sardine Sardinops melanostictus and Pacific round herring Etrumeus teres. Compositions of prey items of the three species in the same month showed greater similarity than for the same species in different months. Prey size as well as prey taxa of the three species overlapped considerably with one another. Therefore, interspecific prey competition is likely in the case of limited food availability. The most abundant species tended to change from anchovy to round herring in early winter, from round herring to sardine in late winter and from sardine to anchovy in early spring, indicating a temporal segregation in use of the nursery grounds. Similar seasonal changes in growth rates were observed for the three species. Although interspecific prey competition is likely, the temporal segregation and similar temporal changes in growth rates could favor their coexistence.  相似文献   

7.
The zebraperch, Hermosilla azurea Jenkins and Evermann, a warm-temperate marine fish species with a strictly macroalgal diet, has a relatively long digestive tract with an enlarged hindgut and an associated blind caecum (HC). In zebraperch sampled off Santa Catalina Island, California (33°19′42′′N; 118°18′37′′W) in years 1995 through 2001, direct cell counts, gut epithelium assessment of bacterial attachment, and short-chain fatty acid (SCFA) analyses verified that the zebraperch HC possesses a dense and morphologically diverse, fermentative microbiota. Bacterial cell counts and morphological diversity were significantly higher in HC contents compared to anterior gut regions, suggesting that microbial populations were growing along the digestive tract. Similarly, electron micrographs of the HC epithelium revealed attached microbes, further supporting the possibility that these organisms constitute resident microbiota. Five different SCFAs were detected in all three regions of the digestive tract, but levels were up to three times greater in HC contents. Acetate was consistently the prevailing SCFA in all gut regions. Sequence analysis of bacterial 16S rDNA was used to identify predominant bacterial groups in HC contents. Of the seven main bacterial types identified, Enterovibrio spp. were the dominant bacteria in HC contents followed by species of Bacteroides,Faecalibacterium, and Desulfovibrio. Taken together, our findings show that the zebraperch HC harbors a consortium of microbes that appears to assist in the breakdown of algal polysaccharides in the herbivorous diet of the fish.  相似文献   

8.
Adult Vinciguerria nimbaria are the main prey of tuna during the tuna fishing season (late autumn and winter) in the equatorial Atlantic (0–4°N, and ~15°W). V. nimbaria trophic behavior in the fishing grounds was studied in relation to hydrobiological factors to determine its role in the trophic food web. Sampling stations spaced by 20 nautical miles were set up along a 15°W north–south transect from 4°N to 0°40S. At each station, the temperature and vertical fluorescence profiles were recorded. Nitrate and chlorophyll a analyses were performed on water sampled at different levels in the euphotic zone. Vertical plankton hauls were carried out at depths of 0–100 and 0–200 m using a standard WP2 net fitted with a 200-μm mesh gauze. Vinciguerria nimbaria adults were collected using a young-fish mid-water trawl net (10 × 15 m opening mouth, 10 mm cod end mesh). The weight of the stomach contents, the stomach fullness index, the number of prey, the frequency of occurrence and the prey preponderance were recorded for 20 fish from each haul. An oligotrophic typical tropical structure (TTS) was found between 1° and 4°N where small zooplankton was relatively abundant above or near the thermocline. In the TTS, V. nimbaria behaved as an epipelagic fish, feeding on the dominant small prey during the daytime. In turn, it was a prey for tuna. In the equatorial zone, where zooplankton was more abundant than in the north equatorial zone, V. nimbaria behaved as a mesopelagic fish and as an opportunistic mesozooplankton feeder. It consumed a wide range of sizes of food, feeding on the most abundant species of zooplankton as well as the largest zooplankton species, possibly while migrating towards the surface in the late afternoon or in the deep layer.  相似文献   

9.
Recruitment of capelin in the Barents Sea fail when juvenile herring and cod are abundant and the potential for feeding competition of wild sympatric capelin and herring larvae and small cod juveniles were investigated. The frequency of gut evacuation after capture of capelin larvae were also studied in mesocosms. Small capelin larvae (<35 mm length) fed on small prey including phytoplankton, invertebrate eggs and nauplii, bivalves, other invertebrate larvae and small copepods. Calanus copepodites were only observed in large capelin larvae (>26 mm length). Calanus copepodites were the major food sources for contemporary herring larvae (25–35 mm length) and Calanus and euphausiids were the major prey for small juvenile herring (37–60 mm length) and cod (18–40 mm length). Capelin larvae reared in mesocosms evacuated the guts shortly after capture. Capelin larvae had a smaller mouth and fed on smaller prey than herring and cod of the same length. This implies that the small capelin larvae, in contrast to sympatric small herring and cod, are not tightly linked to the food chain involving Calanus and euphausiids. Thus, exploitative competition between capelin larvae and planktivorous fish that rely on Calanus and euphausiids in the Barents Sea may be relaxed.  相似文献   

10.
The contents of free amino acids (FAA) and total protein, together with growth and gut-content, of turbot (Scophthalmus maximus L.) larvae reared at 14, 18 and 22 °C were studied from first-feeding to approximately 140 effective day-degrees post hatch (Deff ). Artemia franciscana nauplii and two species of rotifers were used as prey. Protein content accounted for about 42 and 26% of dry body mass in the A. franciscana nauplii and the rotifers, respectively. The FAA pool constituted 5.6 and 4.8% of the total amino acids in the same animals. The dry body mass of turbot larvae was exponentially related to Deff . Protein and FAA contents were linearly related to dry body mass, and were independent of rearing temperature between 14 and 18 °C. At the end of the experiment, however, turbot larvae at 22 °C had lower gut content values, retarded growth rates, and decreased FAA contents and concentrations. Thus, at this high temperature, turbot larvae seem unable to catch and ingest sufficient prey, or to sustain an amino acid assimilation rate from the intestine sufficient to meet metabolic demands. Received: 2 January 1997 / Accepted: 25 September 1998  相似文献   

11.
12.
Most studies on feeding by herring larvae (Clupea harengus) have taken place in clear, open waters, but several herring stocks around the world spawn in inshore and estuarine regions. An example is the spring-spawning Blackwater Estuary (Essex, England) stock. Samples were collected in this estuary to examine prey selectivity and feeding levels in relation to biological and environmental conditions. Herring larvae negatively selected copepod nauplii, but positively selected the copepodite and adult stages of Acartia spp. Gastropod larvae were also positively selected. Particles >150 μm width were preferred, whilst particles smaller than this value were preferentially rejected. Concentrations of potential prey items in the water were in the range of 6.0 to 49.7 organisms l−1 with a median concentration of 15.0 organisms l−1 (n = 26). These values are towards the low end of prey concentrations quoted in the literature as being required to sustain herring larval growth and survival. However, theoretical considerations suggest that, in this environment, levels of tidally-induced turbulence enhance encounter rates between larval herring and their prey. On the other hand, turbidity is also related to tidal current speed and might reduce feeding success by decreasing underwater light levels. Measurements at two sites in the estuary confirmed that tidally-induced turbidity reduced the effective water depth in which herring larvae could visually feed by up to 50% at times of peak current speed. However, with the gut-content data available in the present study, it was not possible to discern any clear relationships between feeding success and the state of the tide. Feeding success appeared to be more strongly influenced by surface light-levels. Received: 24 June 1998 / Accepted: 17 February 1999  相似文献   

13.
Accurate determination of diet is important in ecological studies. Many macrobenthic predators fragment their prey so finely that identification of component organisms is difficult. Knowledge of the food available to masticatory predators such as lobsters can help in determining potential prey and enhance the accuracy of dietary assessments. With SCUBA divers limited by depth and submersion time, benthic analyses are becoming increasingly reliant on camera systems. Here, based on paired samples, we assess the relative merits of using removal-sampling by divers versus monochrome video photography to determine the prey spectrum available to macrobenthic predators. We also relate the results to the gut contents of rock lobsters (Jasus lalandii) that were collected simultaneously. Diver samples took on average four times longer to collect and process than video-image samples. No significant differences were evident between the number of species identified in diver samples and video-image samples (n = 21 paired samples, Student's t = 0.233, P > 0.1), although an analysis of similarity (ANOSIM) test revealed that the results obtained from the two sampling methods were significantly different in terms of species composition (global R = 0.203, P < 0.01). Cluster analysis based on Bray–Curtis similarity to compare diver and video-image samples revealed four clusters of samples with <35% similarity, confirming that the two techniques do sample different assemblages of species. Video images detected and allowed identification of all species of prey recorded in the rock lobsters' stomach contents, probably because rock lobsters prey mainly on relatively large prey which are readily detected by video. Diver-sampling underestimated or failed to detect two important prey types, namely small barnacles and encrusting coralline algae. We concluded that the camera system employed was adequate for assessing the prey assemblages available to macrobenthic predators such as lobsters, and that it was considerably more economical than using divers. Received: 10 September 1998 / Accepted: 6 May 1999  相似文献   

14.
The commercially and ecologically valuable sandeel (Ammodytes ssp.) make distinct vertical shifts between an inactive stage, during which they seek refuge in the sand, and a pelagic schooling stage, during which they forage. This characteristic discontinuous foraging pattern constitutes a challenge to fishery biologists and has consequences for a wide range of predators ranging from birds and mammals to commercially important species. However, experimental studies that shed light on the primary drivers of foraging activity in fish are rare. In the present study, whole schools of sandeel (A. tobianus) were caught in August in east Denmark (65°02′30N; 12°37′00E) and kept in large tanks in the laboratory. It was found that the amount of food ingested and memory of past days feeding history are primary drivers of foraging activity at the level of the entire school, whereas external factors such as prey concentration and temperature are merely secondary drivers.  相似文献   

15.
A total of 129 specimens ofLepidopsetta bilineata (Ayres) were collected in the eastern Bering Sea (57°02–58°11N; 161°58–164°38W) between 28 August and 7 September 1984. Examination of its stomach and intestine contents revealed that polychaetes, gammarid amphipods and echiuroids constitute the bulk of its diet. Prey type is related to fish size. Juveniles consume more mobile prey, such as small crustaceans (gammarid amphipods, cumaceans, carideans), while adults, although still continuing to feed on gammarid amphipods, preferentially feed on infaunal organisms such as polychaetes, echiuroids and mollusks. Some prey, such as echinoderms, fishes and urochordates, were encountered only in stomachs, which resulted in a higher index of feeding diversity for this organ. Rock sole feeds primarily during daylight hours, peaking at dusk. Its daily ration was estimated as 0.49, 1.12, and 1.61% of fish body weight from contents of stomach, intestine, and stomach plus intestine, respectively.  相似文献   

16.
The diet of the emperor penguin Aptenodytes forsteri in the western Ross Sea during spring was investigated by analysis of stomach contents sampled at three different localities. At Cape Washington, emperor penguins feeding chicks consistently preyed on fishes (89 to 95% by mass) and crustaceans (5 to 11%) over the four spring seasons examined. By far the commonest prey was the Antarctic silverfish Pleuragramma antarcticum (89% of the fish prey); the remainder of fish prey were mainly unidentified juveniles of different species of channichthyid fishes. Three species dominated the crustacean part of the diet, i.e. the gammarid amphipods Abyssorchomene rossi/plebs (30% of the crustacean prey) and Eusirus microps (22%), together with the euphausiid Euphausia crystallorophias (24%). At Coulman Island and Cape Roget, fishes, mainly P. antarcticum, formed the bulk of the food (88 and 93% by mass, respectively), crustaceans were minor prey (2.5 and 0.4%), and the squid Psychroteuthis glacialis accounted for a small but significant part of the food (3.5 and 0.8%). This study emphasizes the importance of the small, shoaling pelagic fish Pleuragramma antarcticum as a key link between zooplankton and top predators, including seabirds, in the food web and marine ecosystem of the Ross Sea. Received: 20 May 1997 / Accepted: 8 October 1997  相似文献   

17.
The behavioral responses of fishes to temperature variation have received less attention than physiological responses, despite their direct implications for predator–prey dynamics in aquatic ecosystems. In this paper, we describe the temperature dependence of swimming performance and behavioral characteristics of juvenile Pacific cod (Gadus macrocephalus; 75–125 mm total length). Maximum swimming speeds increased with temperature and body size. Routine swimming speeds of Pacific cod in small groups of similarly sized fish (N = 6) increased with body size and were 34 % faster at 9 °C than at 2 °C. The response to temperature was opposite that previously described for juvenile walleye pollock (Theragra chalcogramma), reflecting species-specific differences in behavioral responses. In a separate experiment, we demonstrated the effect of temperature on habitat selection of juvenile Pacific cod: Use of an artificial eelgrass patch in a 5-m-long laboratory tank was significantly greater at 9 °C than at 2 °C. These results illustrate that temperature affects a range of behavioral traits that play important roles in determining the frequency and outcomes of predator–prey interactions.  相似文献   

18.
The degree of individual or gender variation when exploiting food resources is an important aspect in the study of foraging ecology within a population. Previous information on non-breeding skimmers obtained through conventional methodologies suggested sex-related differences in prey species. In this study, stable isotope techniques were used to investigate the intraspecific segregation in diet and foraging habits of the Black Skimmer (Rynchops niger intercedens) at Mar Chiquita Coastal Lagoon (37°40′S, 57°22′W), Argentina. These results were compared with contemporary data on the trophic composition obtained by conventional methodologies. Blood samples were taken from birds captured with mist-nets during their non-breeding season. The isotopic signatures of skimmers showed a diet mainly composed of marine prey with some degree of estuarine fish intake. When comparing diet between sexes, males showed enrichment in 15N compared to females, while no differences were observed in 13C. The use of mixing models revealed differences in the relative composition of prey in the diet of male and female skimmers. This study highlights stable isotope analysis as a valuable tool to test inter-individual differences and sexual segregation in trophic ecology of Black Skimmers as compared to conventional methodologies. The results show a trophic segregation in the Black Skimmer during the non-breeding season that can be explained by differences in prey species and larger prey sizes of male skimmers. Our findings have significant implications for conservation since any environmental change occurring at wintering areas might have profound effects on several avian life-history traits, and could be different for males and females due to trophic segregation.  相似文献   

19.
Dietary information obtained from stomach contents can provide a wealth of information on an animal’s ecology. Where animals are cryptic, such as the post-hatchling life history stage of a sea turtle, the ecological insight that dietary analyses can provide, may be otherwise unobtainable. Investigations into post-hatchling turtle stomach contents have found planktonic organisms, dominated by pelagic molluscs and crustaceans, hydrozoans, Sargassum and fish eggs. The nature of these dietary organisms provides evidence for the widely accepted hypothesis that, with the exception of the flatback turtle (Natator depressus), the post-hatchling stage of a sea turtle’s life history is pelagic and oceanic. As the majority of studies that have investigated the stomach contents of post-hatchling sea turtles have been conducted on loggerhead turtles (Caretta caretta) in the northern Atlantic and Pacific Oceans, insight derived from dietary investigations into post-hatchling ecology is biased. This study investigates the diet of post-hatchling green turtles (Chelonia mydas) and loggerhead turtles in the southwest Pacific Ocean. Stomach contents were obtained from 55 green and loggerhead post-hatchling turtles that had stranded or been consumed by Coryphaena hippurus. Our findings demonstrate that loggerhead and green post-hatchlings in the southwest Pacific share similar feeding ecology and feed on a variety of neustonic items that are indicative of an oceanic and pelagic existence. The dietary items consumed by both species investigated belong to similar taxonomic groups as those found in previous studies with species level distinctions occurring owing to the different geographical location.  相似文献   

20.
Recent studies have indicated that populations of gelatinous zooplankton may be increasing and expanding in geographic coverage, and these increases may in turn affect coastal fish populations. We conducted trawl surveys in the northern California Current and documented a substantial biomass of scyphomedusae consisting primarily of two species (Chrysaora fuscescens and Aurelia labiata). Spatial overlap of these jellyfish with most pelagic fishes, including salmon, was generally low, but there were regions of relatively high overlap where trophic interactions may have been occurring. We compared feeding ecology of jellyfish and pelagic fishes based on diet composition and found that trophic overlap was high with planktivorous species that consume copepods and euphausiid eggs such as Pacific sardines (Sardinops sagax), northern anchovy (Engraulis mordax), Pacific saury (Cololabis saira), and Pacific herring (Clupea pallasi). Moreover, isotope and diet analyses suggest that jellyfish occupy a trophic level similar to that of small pelagic fishes such as herring, sardines and northern anchovy. Thus jellyfish have the potential, given their substantial biomass, of competing with these species, especially in years with low ecosystem productivity where prey resources will be limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号