首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
唐山市南湖湿地水体富营养化治理研究   总被引:3,自引:1,他引:2  
以芦苇作为人工湿地植物,土壤为基质建立人工湿地,采用人工湿地控制试验的方法深入研究了芦苇和湿地基质对唐山人工湿地南湖污水中氮磷的净化能力以及氮、磷在芦苇根、茎、叶的时空分布和动态变化,实验结果表明:芦苇湿地对污水中的氮、磷的净化效果十分明显,在一个月内对污水中TN的平均去除率可达到61.99%,TP平均的去除率可达51.97%,其中基质吸附和植物吸收作用是湿地脱氮除磷的重要形式。  相似文献   

2.
不同植物与水力负荷对人工湿地脱氮除磷的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
通过6种湿地植物的表流 (SF) 和潜流(SSF)人工湿地对比实验,分析了不同植物的SF和SSF人工湿地去除率随水力负荷(HL)变化的规律,得到了6种不同植物的SF和SSF人工湿地的最优HL、最优去除率.实验结果表明:6种植物的SF和SSF人工湿地对TP、TN去除率随HL的增加而降低,且植物不同,去除率降低趋势不同,且SSF人工湿地去除率降低值比SF小.SF人工湿地TP、TN去除率比SSF低,且TP去除率比TN大.SF人工湿地中水葱对TP、TN去除率降低最大,水芹菜对TP去除率降低最小,美人蕉对TN去除率降低最小;SSF人工湿地中美人蕉对TP去除率降低最大,水芹菜最小对TP去除率降低最小.芦苇对TN 去除率降低最大,水葫芦对TN去除率降低最小.6种植物SF人工湿地去除TP和TN的平均最优HL分别为0.53,0.47t/(m2×d);SSF人工湿地去除TP、TN平均最优HL分别为0.68,0.44t/(m2×d).  相似文献   

3.
针对农副产品加工园区食品加工行业产生的废水,在沈阳市辉山明渠河口湿地污水处理厂构建中试规模的新型复合流人工湿地,通过对比研究明确该湿地对化学需氧量(COD)、氨氮(NH_3-N)、总氮(TN)和总磷(TP)的处理效果。结果表明,垂直流人工湿地(VSF)和复合流人工湿地(HVC)对COD的平均去除率分别为39.69%、45.56%;对氨氮的平均去除率分别为51.23%、80.96%;对TN的平均去除率分别为35.80%、57.30%;对TP的平均去除率分别为48.80%、80.24%。新型复合流人工湿地通过灵活的布水方式,营造出适宜微生物生存的溶解氧和温度环境,对有机物和氮磷的分解和吸收过程都比较完整。但是,复合流人工湿地需要控制进水的污染物浓度,超高浓度的污水将使湿地植物的生长和微生物环境遭到破坏。  相似文献   

4.
不同植物人工湿地净化效果及基质微生物状况差异分析   总被引:6,自引:2,他引:4  
为研究不同植物对人工湿地污染物净化效果和基质微生物状况的影响,采用序批式运行的沙培模拟人工湿地,探讨了菖蒲、香蒲、千屈菜、芦苇和白鹤芋5种湿地植物在不同HRT(水力停留时间,分别为1,3和5 d)下对模拟废水中TP,NH4+-N和CODCr去除效果的影响,比较了不同植物类型模拟人工湿地中基质微生物的数量差异. 结果表明,不同植物系统对污染物的去除随HRT延长逐渐提高,HRT为5 d时各植物系统对污染物的去除效果最佳.TP,NH4+-N和CODCr的最高去除率分别达90.4%,61.7%和96.4%.相对于其他试验系统,菖蒲系统对各污染指标均具有最优的去除效果. 植物种类对基质微生物数量的影响无显著差异.研究还发现,各系统中亚硝酸细菌数量与NH4+-N去除率之间呈显著相关.   相似文献   

5.
人工湿地基质微生物状况与净化效果相关分析   总被引:42,自引:4,他引:38  
利用混菌法和稀释法,测定了不同植物以及无植物潜流水平湿地基质中微生物的数量.结果表明:不同植物湿地基质中微生物的数量差异不显著,有植物和无植物湿地的差别不明显;湿地基质中不同空间位置的微生物数量各不相同,一般上层多于下层;在湿地运行条件相对稳定的情况下,湿地基质中会逐渐形成数量和活性比较稳定的生物群落.分析了人工湿地基质中微生物数量与污水净化效果的关系.结果表明:微生物数量与BOD5及TN的去除有显著的相关性,说明微生物的作用是去除它们的重要途径;基质微生物数量与TP的去除率相关性不明显.测定了湿地基质硝化速率,其硝化能力与亚硝化细菌的数量呈显著相关.   相似文献   

6.
采用页岩和香蒲(Typha latifolia L.)构建人工垂直潜流湿地处理津河富营养化水体,并用聚丙烯小球替代部分页岩研究其对垂直潜流湿地氮磷去除性能的影响.设计水力负荷800 mm/d,理论水力停留时间12h.试验期间(2006-06~2006-11),氮磷月平均去除率在8月份达到最大值.与全页岩湿地相比,聚丙烯小球使氨氮(NH 4-N)、总氮(TN)、溶解性活性磷(SRP)和总磷(TP)月平均去除率分别提高13.38%、8.9%、9.29%和8.25%,使用聚丙烯小球能够有效提高人工垂直潜流湿地氮磷去除效率.试验结束后收割香蒲地上组织(茎和叶),测定地上组织生物量及茎、叶中的氮磷含量.结果表明,聚丙烯小球虽然抑制香蒲地上组织生物量的增加,但却能够有效提高茎、叶中氮磷含量.通过收割香蒲地上组织可使TN和TP去除分别增加29.382 g·m-2和13.469 g·m-2.  相似文献   

7.
人工湿地基质微生物状况与净化效果相关分析   总被引:1,自引:0,他引:1  
了解微生物在湿地基质中的状况对理解人工湿地去除污染物机理具有重要意义。利用混菌法和稀释法,测定了不同植物以及无植物的潜流水平湿地基质中微生物的数量,研究了潜流水平湿地不同空间基质微生物的类群数量以及它们与污水净化效果的关系。结果表明,不同植物的湿地基质微生物数量差异不显著,有植物和无植物湿地的差别不明显;湿地基质中不同空间处微生物数量不相同,一般上层多于下层。在湿地运行条件相对稳定的情况下,湿地基质中会逐渐形成数量和活性比较稳定的生物群落。人工湿地基质中微生物数量与BOD5、TN的去除有显著相关性,说明微生物的作用是去除它们的重要途径;基质中微生物数量与TP的去除率相关性不明显,说明磷的去除尚有其他途径。测定了湿地基质硝化速率,硝化能力与亚硝化细菌的数量呈显著相关。  相似文献   

8.
潮汐流-潜流组合人工湿地微生物群落多样性研究   总被引:3,自引:1,他引:2  
为研究潮汐流-潜流人工湿地组合的微生物群落空间分布,构建了潮汐流-潜流湿地组合实验装置对人工模拟生活污水进行净化处理,采用PCR-DGGE技术对组合工艺实验装置中微生物空间分布特征进行研究.结果表明,种植植物(香蒲)的人工湿地组合NH_4~+-N、NO_3~--N和NO_2~--N去除率分别为70.22%、28.42%和38.30%,未种植植物的人工湿地组合NH_4~+-N、NO_3~--N和NO_2~--N去除率分别为55.15%、65.26%和61.70%.两组湿地内优势微生物种类共有44种,潮汐流单元微生物种类空间分布差异性较小,系统内多为好氧微生物.潜流人工湿地单元微生物空间分布差异较大,上层以好氧微生物为主,中下层以缺氧和厌氧微生物为主.种植植物可以提高湿地系统中微生物量、微生物群落多样性和均匀性.潮汐流-潜流组合工艺在系统内实现了硝化-反硝化的组合,比一般的潜流和表面流人工湿地组合TN去除率提高了20%~30%.  相似文献   

9.
为探讨聚丙烯球对表面流人工湿地内氮、磷时间和空间分布的影响,文章采用室外对照实验的方法,构建了表面流湿地-聚丙烯球组合装置(系统A)、表面流湿地(系统B)、聚丙烯球装置(系统C)及空白对照4套平行小试装置,对4套装置3个不同水层高度氮、磷时间和空间降解规律进行研究。结果表明:引进聚丙烯球的表面流人工湿地(系统A)的NH_4~+-N、TN、TP去除效果均优于其余3个系统;系统A最高的氮磷去除率发生在第0~3天,第6天氮磷出水浓度即可达到地表水Ⅲ类标准,而没放置聚丙烯球的系统B则需要第9天才达到地表水Ⅲ类标准。因聚丙烯球微生物挂膜,系统A的上、中、下水层NH_4~+-N、TN、TP浓度均低于其余3个系统。时间上,聚丙烯球通过提高氮磷去除效率来影响表面流人工湿地氮磷在时间上的分布;空间上,聚丙烯球通过增加水层中的微生物量来促进不同水层氮磷的去除,对上水层的促进作用最明显。  相似文献   

10.
垂直流湿地基质中酶的分布与氮磷及有机质的关系   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解垂直流人工湿地基质中酶的空间分布特点及其与基质中氮磷和有机质的关系,采用垂直流人工湿地微宇宙试验系统进行了为期4个月的运行试验,分析种植植物的皇竹草系统和不种植物的对照系统基质中不同深度层酶活性的变化,以及酶活性与基质中污染物的关系. 结果表明:脲酶、磷酸酶、过氧化氢酶、转化酶、蛋白酶和纤维素酶这6种酶的活性在上层(0~<10 cm)的分布特点相一致,即皇竹草系统基质中的酶活性显著高于对照系统(P<0.05). 在垂直方向上,两个系统中6种酶的活性都表现为上层显著较高,这与基质中w(TN)、w(TP)和w(有机质)的分布规律相一致;Pearson相关性分析发现,脲酶活性与w(TN)、w(TP)、w(有机质)均呈极显著正相关(相关系数依次为0.951、0.970、0.933,P均小于0.01),过氧化氢酶、转化酶活性均与w(TN)呈极显著正相关(相关系数依次为0.997、0.916,P均小于0.01),磷酸酶活性与w(TP)、w(有机质)均呈极显著正相关(相关系数依次为0.925、0.919,P均小于0.01),转化酶活性与w(TP)呈显著相关(相关系数为0.869,P<0.05),纤维素酶活性与w(有机质)呈显著相关(相关系数为0.864,P<0.05). 研究显示,在垂直流人工湿地系统中种植皇竹草有助于提高基质中酶的活性,酶活性与氮磷及有机质等污染物的积累和迁移密切相关.   相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

17.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

18.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

19.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

20.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号