首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为了解我国东南沿海地区织纹螺体内的毒素状况,利用生物法对采自我国东南沿海的织纹螺样品毒性进行了测定.实验结果和相关资料表明:织纹螺的毒性与其种类关系密切.光织纹螺(Nassarius rutilans)、正织纹螺(Zeuxis scalaris)和节织纹螺(Nassarius hepaticus)为有毒织纹螺;纵肋织纹螺(Nassarius variciferus)、习见织纹螺(Nassarius dealbatus)和胆形织纹螺(Nassariust hersites)为无毒织纹螺;方格织纹螺(Nassarius clathratus)、西格织纹螺(Nassarius siquinjorensis)、半褶织纹螺(Nassarius semiplicatus)、红带织纹螺(Nassarius succinctus)、疣织纹螺(Nassarius papillosus)、花织纹螺(Zeuxis castus)、素面织纹螺(Nassarius sufflayus)和橡子织纹螺(Nassarius glans)毒性不明,可能为季节性有毒织纹螺.多种织纹螺的毒性变化规律目前尚不清楚,人们应尽量避免食用织纹螺.  相似文献   

2.
中国与欧洲禾谷镰刀菌DON毒素HPLC定量比较分析   总被引:1,自引:0,他引:1  
选用4个来自中国、7个来自欧洲的代表性禾谷镰刀菌菌株,经脱氧雪腐镰刀菌烯醇(DON)毒素特异引物鉴定,确认其具有产生DON毒素的遗传物质基础后,接种于PDB培养基培养7d,从培养基上清中经硅胶柱分离、纯化DON毒素,经HPLC定量分析表明,纯化的禾谷镰刀菌DON毒素,与购自公司的DON毒素标准样品一样,其HPLC检测谱峰清晰明显,基线平稳,无干扰,保留时间为9.5min左右;供试菌株的DON毒素含量分布在0.023~1.934μg/mL之间,德国菌株F703产毒量最大,比位居第二的中国菌株5005(1.232μg/mL)高57%;其余的6个欧洲菌株中,除意大利菌株Lor9(0.128μg/mL)略低于另一个中国菌株7105(0.135μg/mL)外,均比3个中国菌株(4020、7105、8029)的产毒量大.欧洲镰刀菌产生DON毒素的能力远远大于中国菌株,这说明欧洲菌株长期在欧洲生态环境下已演变形成其特有的高毒素代谢类型,我国有必要严防欧洲禾谷镰刀菌入侵,加强对来自欧洲的禾谷类粮食及其产品的镰刀菌和毒素的检疫和监控;同时,本研究建立的毒素样品制备与HPLC检测体系可用于准确定量分析样品的DON毒素.图3表2参14  相似文献   

3.
我国东南沿海经常有食用含有河豚毒素节织纹螺的中毒事件发生,含有河豚毒素的动物对河豚毒素有很高的耐受能力,并对环境中的河豚毒素具有趋食性.织纹螺可以富集食物中的河豚毒素,但织纹螺体内的与河豚毒素富集相关的蛋白质还不清楚.为此我们收集了无毒的织纹螺,通过河豚毒素富集实验和蛋白质组学分析,发现在有毒织纹螺中有4种蛋白质表达量显著增多,飞行质谱(MALDI-TOF-MS)鉴定分析它们分别是actin、actin2、beta-actin、膜泡ATP合酶B亚基.分析表明这些蛋白可能与河豚毒素在织纹螺体内富集、传递有关.  相似文献   

4.
我国东南沿海经常有食用含有河豚毒素节织纹螺的中毒事件发生,含有河豚毒素的动物对河豚毒素有很高的耐受能力,并对环境中的河豚毒素具有趋食性。织纹螺可以富集食物中的河豚毒素,但织纹螺体内的与河豚毒素富集相关的蛋白质还不清楚。为此我们收集了无毒的织纹螺,通过河豚毒素富集实验和蛋白质组学分析,发现在有毒织纹螺中有4种蛋白质表达量显著增多,飞行质谱(MALDI-TOF-MS)鉴定分析它们分别是actin、actin2、beta-actin、膜泡ATP合酶B亚基。分析表明这些蛋白可能与河豚毒素在织纹螺体内富集、传递有关。  相似文献   

5.
在室内条件下研究了温度 (θ/℃ )、盐度 (ρ/gL-1)及pH对有毒甲藻塔玛亚历山大藻 (大鹏株 )的生长及其毒力的影响 .实验表明 ,塔玛亚历山大藻θopt为 15~ 2 5℃ ,最大生长率出现在接种后 6~ 8d ;在盐度为 14~32g/L范围内 ,该藻均可生长 ,盐度 2 3~ 2 7g/L时生长最佳 ;在弱酸弱碱下 ,该藻可较好生长 ,pHopt=6~ 7;用小白鼠法测得本藻株c(HCl) =0 .1mol/L提液的麻痹性贝毒毒力为 0 .5 0× 10 -5~ 3.2× 10 -5Mu/cell,在同种藻株中属低毒藻株 .与其他作者对本藻株用不同毒素抽提方法及测定技术所得结果的比较表明 ,其藻毒力测定值最大相差达 30倍 .图 3表 2参 17  相似文献   

6.
为了了解贵州高原水库蓝藻群落组成特征和微囊藻毒素分布,于2009年10月对贵州高原2座水库——万峰湖和百花湖采样调查。结果表明:万峰湖以蓝藻为主要优势藻,蓝藻中的拟柱孢藻(Cylindrospermopsis sp.)占绝对优势,浮游植物丰度在13.05×104~55.80×104 cells.L-1之间,蓝藻的丰度值占到了总量的82.55%,6个采样点中有3个(大坝、野鸭滩和革布)检出了微囊藻毒素MC-RR,且有1个点(革布)质量浓度超标,另外3个点(坝艾、坝达章和九里堡)未检出;百花湖以蓝藻、绿藻和硅藻共同构成优势藻,蓝藻中的假鱼腥藻(Pseudanabaena limnetica)是主要优势藻,浮游植物丰度在6.16×104~65.00×104 cells.L-1之间,蓝藻的丰度值在总体中所占比例为33.25%,3个采样点(大坝、岩脚寨和码头)均未检出微囊藻毒素。形成2个高原水库蓝藻群落结构和微囊藻毒素分布差异的原因可能是:2个水库中氮、磷营养盐水平不同引起浮游植物群落组成不同,进而导致了微囊藻毒素的分布出现差异。  相似文献   

7.
为研究武汉市道路尘中碳组分污染特征及来源,于2018年5月在武汉市青山区采集道路尘样品,用热光碳分析仪测定样品中有机碳(OC)、元素碳(EC)、烟炱(soot)和焦炭(char)含量,并使用特征比值法、相关分析及主成分分析法对道路尘碳组分污染特征和来源进行探讨分析.结果表明,道路尘中OC、EC、soot和char含量平均值分别为1.29、2.21、2.04、0.17 g·kg-1,说明不同碳组分含量存在较大的空间变异性.相关性分析表明OC和EC的来源存在一定差异,且EC主要贡献来源是soot.OC;EC和char;soot比值和主成分分析结果表明,武汉市青山区道路尘中碳组分主要来源于机动车尾气和燃煤排放,也可能受到生物质燃烧的影响.  相似文献   

8.
从去甲基化能力方面研究地表水、地下水、土壤等环境样品综合表观遗传毒性。将pEGFP-C3质粒通过人工甲基化处理获得荧光蛋白基因启动子区处于高甲基化状态的C3质粒,并将其转染进人类HepG-2肝癌细胞株,随后以该改造细胞株(EGFPHepG2)为主要工具载体,与样品提取液进行共培养,依据细胞绿色荧光强度来定量评价样品的去甲基化功能的强弱(简称EGFP方法)。同时通过电感耦合等离子体质谱法(ICP/MS)对样品提取液的成分进行扫描检测分析。结果表明,在9个测试样中,有7个显示出可以观察到的去甲基化表观遗传毒性,占测试样品的78%。其去甲基化表观遗传毒性当量介于0.065~0.257μmol·L-1的5-Aza-CdR之间。在4个存在超标的土壤或底泥样品中,有3个被检测出具有可以观察到的去甲基化表观遗传毒性,环境样品表观遗传毒性检测结果也与环境分析结果具有基本一致的趋势。结果初步显示,部分环境样品去甲基化能力较强,具有不容忽视的表观遗传毒性。  相似文献   

9.
本文主要介绍用非极性烷基化学键合固定相柱(μ-Bondpak C18),以极性大而无毒的水做流动相主要组分,用带有UV检测器的高效液相色谱(HPLC)分离黄曲霉毒素(AFT)G_2、 G_1,B_2和B_1四种异构体的方法。本方法测定一组标准AFT,在十几到四百毫微克范围内,呈现良好的浓度-峰高线性关系。四种毒素的最小检测量为3.2—3.9毫微克。并对广西玉米、花生米、花生油等样品中的AFT做了测试。 本方法的灵敏度和精确度完全能满足国家食品卫生标准中对AFT的检测要求。  相似文献   

10.
为了更好地探究我国城市地区大气污染问题,2019年10月15—2020年3月1日在山西省运城市采用四通道大气颗粒物采样仪每23 h进行1次细颗粒物(PM2.5)样品采集,分析了样品中有机碳(OC)、元素碳(EC)、水溶性有机碳(WSOC)、水溶性离子的浓度,并对比分析了甲醇提取液和水提取液的紫外-可见吸光特性.结果显示,采样期间PM2.5质量浓度变化范围为6.21—325μg·m-3,其中有41 d达到《环境空气质量指数(AQI)技术规定(试行)》(HJ 633—2012)规定轻度污染及以上的标准,占总天数的64%,说明运城市冬季污染严重.其中,二次无机水溶性离子和有机质为PM2.5的主要组成成分,分别占PM2.5质量浓度的39.6%、29.7%(优良天),38.9%、30.8%(轻-中度污染),40.4%、29.1%(重度污染),38.9%、26.5%(严重污染). NO3-是含量最高的水溶性离子,并且4个时期NO3  相似文献   

11.
Two starfishes, togemomijigai Astropecten polyacanthus and momijigai A. scoparius were collected from the Seto Inland Sea in October 1983 through November 1984, and assayed for toxicity by the standard method for tetrodotoxin (TTX). Most of the 54 A. polyacanthus specimens assayed were toxic, with the highest toxicity score being 520 mouse units (MU) g-1. All seven A. scoparius were toxic, with the highest score being 46 MU g-1. The toxin from A. polyacanthus was purified by a method which consisted mainly of activated charcoal treatment, and chromatography on CM-Sephadex C-25 and Bio-Rex 70 columns. The purified starfish toxin showed a specific toxicity of 4 700 MU mg-1, a value which was almost comparable to that of authentic TTX. From the thin-layer chromatographic and electrophoretic behavior, along with 1H-NMR spectrum, A. polyacanthus toxin was identified as TTX.  相似文献   

12.
Snakes are common predators of organisms, such as amphibians, with toxic defenses that can be lethal to other predators. Because snakes do not have the option of dissecting prey into edible versus inedible components, they face a full dose of any chemical defenses encountered during attempted predation. This limitation has likely resulted in intense selection favoring the evolution of alternative mechanisms for dealing with prey toxins. These mechanisms can be physiological (e.g., resistance to prey toxins) or behavioral (e.g., toxin sampling and rejection). When physiological resistance arises, the possibility of bioaccumulation of a toxin results. We examined the coevolutionary interaction between the common garter snake (Thamnophis sirtalis) and the rough-skinned newt (Taricha granulosa), which contains a powerful neurotoxin called tetrodotoxin (TTX). In some populations syntopic with newts, individuals of T. sirtalis have evolved resistance to TTX. We examined the persistence of TTX in T. sirtalis after administration of an oral dose of TTX to investigate the possibility that snakes are sequestering TTX. The half-life of TTX in snake liver was estimated at 8.1?days. Accordingly, clearance of 99% of a single dose of TTX averages 61?days. Negative fitness consequences of intoxication during and after newt consumption may be balanced by co-opting the newts?? chemical defense for protection from the snakes?? own predators. Accounting of the coevolutionary dynamic between snakes and newts must incorporate post-consumption affects of lingering TTX.  相似文献   

13.
Hwang  D. F.  Lu  S. C.  Jeng  S. S. 《Marine Biology》1991,111(1):65-69
Paralytic toxicity was detected in four of 17 specimens and six of 28 specimens of the gastropodsRapana rapiformis andR. venosa venosa, respectively, collected from Chiching (Kaohsiung City) and Nanfangao (Ilan County), Taiwan, in 1988 and 1989. The highest toxicities, calculated as tetrodotoxin (TTX) content, were 140 and 13 mouse units (MU) g–1 digestive gland inR. rapiformis andR. venosa venosa, respectively. The toxins obtained from each species were purified by ultrafiltration and Bio-Gel P-2 column chromatography. The toxin's specific toxicities (as TTX) were 56 MU mg–1 (R. rapiformis) and 52 MU mg–1 (R. venosa venosa). Results of analyses by thin-layer chromatography, cellulose acetate membrane electrophoresis and high-performance liquid chromatography showed that TTX and anhydrotetrodotoxin were responsible for the toxicity. The alkali hydrolysate of each toxin showed maximum absorption at ca. 274 nm, which is the unique absorption for the C9-base of TTX and its related substances (such as anhydrotetrodotoxin, 4-epitetrodotoxin, etc.). Here, we report for the first time the occurrence of TTX in the gastropodsR. rapiformis andR. venosa venosa.  相似文献   

14.
Several live specimens of the blue-ringed octopus Octopus maculosus were collected from the Philippines in November 1985, and from Japan in February 1986, and the distribution of toxicity, along with toxin composition, in the posterior salivary gland and other soft parts were examined. Tetrodotoxin (TTX: 1400 mouse units g-1) was detected in the posterior salivary gland of a Japanese specimen, while not only the salivary gland but other soft parts were toxic in the Philippine specimens. The Philippine specimens contained TTX and anhydrotetrodotoxin, the Japanese specimen TTX, 4-epitetrodotoxin, and an unknown toxin. The posterior salivary gland, intestine and other parts were excised from the Philippine specimens and examined for bacterial flora. Twenty-two dominant strains were isolated and cultured in a 2xORI medium (Ocean Research Institute, Simidu and Tsukamoto 1985) at 20°C for 20 to 48 h. Cells were harvested by centrifugation, and disrupted by ultrasonication. The toxins were partially purified from the cell lyzate by ultrafiltration and Bio-Gel P-2 column-chromatography. Instrumental analyses disclosed that 16 of the 22 strains produced TTX and/or related substances. Six strains which clearly exhibited TTX productivity were identified as Alteromonas (2 strains), Bacillus (2), Pseudomonas (1) and Vibrio (1), based on biochemical and biological characteristics. Of these, one strain each of Bacillus and Pseudomonas produced TTX at a level detectable by the mouse assay.  相似文献   

15.
Lethal chemical defenses in prey species can have profound effects on interactions with predators. The presence of lethal defenses in prey can correct the selective imbalance suggested by the life-dinner principle in which the fitness consequences of an encounter between predator and prey should be much greater for the prey species than the predator. Despite the apparent adaptive advantages of lethality the evolution of deadly prey presents a fundamental dilemma. How might lethal defenses confer an individual fitness advantage if both predators and prey die during interactions? We examined the interaction between the rough-skinned newt (Taricha granulosa), which contains a powerful neurotoxin called tetrodotoxin (TTX), and the common garter snake (Thamnophis sirtalis). In some sympatric populations, Th. sirtalis have evolved physiological resistance to TTX. Whether the newts’ toxin confers protection from snake predators or has been disarmed by the snakes’ physiological resistance has not yet been directly tested. In predator–prey trials, newts that were rejected by snakes had greater concentrations of TTX in their skin (4.52 ± 3.49 mg TTX/g skin) than those that were eaten (1.72 ± 1.53 mg TTX/g skin). Despite the plethora of taxa that appear to use TTX defensively, this is the first direct and quantitative demonstration of the antipredator efficacy of TTX. Because the survival probability of a newt (and thus fitness) is affected by individual TTX concentration, selection can drive the escalation of toxin levels in newts. The variable fitness consequences associated with both TTX levels of newts and resistance to TTX in snakes that may promote a strong and symmetrical coevolutionary relationship have now been demonstrated.  相似文献   

16.
A Chinese praying mantis, Tenodera sinensis, was observed feeding on a living red-spotted newt, Notophthalmus viridescens. Specimens of that newt’s population are known to contain high concentrations of tetrodotoxin (TTX), a specific blocker of voltage-gated sodium channels. After experimental oral administration of a TTX-solution (1 mg/ml) to adult specimens of four mantis species, all survived high TTX concentrations (up to 30.8 μg/g body mass) as revealed by analysis of their body extracts, but they are rapidly killed by intra-abdominal injection of 1 μg TTX. The toxin was found to be gradually excreted with faeces. As demonstrated by monoclonal antibody-based immunohistochemical technique, TTX does not penetrate the mid-gut membrane, since it was localized only in the gut lumen, but not in the epithelial cells. This prevents the toxin to reach its target, the sodium channels of the insect’s nervous system, and enables the mantids to feed on toxic prey without risking poisoning.  相似文献   

17.
Abstract: Amazonia is a highly threatened rainforest that encompasses a major proportion of Earth's biological diversity. Our main goal was to establish conservation priorities for Amazonia's areas of endemism on the basis of measures of evolutionary distinctiveness. We considered two previously identified sets of areas of endemism. The first set consisted of eight large areas used traditionally in biogeographical studies: Belém, Tapajós, Xingu, Guiana, Rondônia, Imeri, Inambari, and Napo. The second set consisted of 16 smaller areas that were subdivisions of the larger areas. We assembled a data set of 50 phylogenies that represented 16 orders and 1715 distributional records. We identified priority conservation areas for the areas of endemism according to node‐based metrics of evolutionary distinctiveness. We contrasted these results with priority areas identified on the basis of raw species richness and species endemicity. For the larger areas, we identified Guiana and Inambari as the first‐ and second‐most important areas for conservation. The remaining areas in this first group scored half (e.g., Napo) or less than Guiana and Inambari on all indices. For the smaller areas, a subdivision of Guiana (i.e., Guyana and the Brazilian states of Roraima and Amazonas) was at the top of the ranking and was followed by a subdivision of Inambari (i.e., northwestern portion of Amazonas) and then another subdivision of Guiana (i.e., Suriname, French Guiana, and the Brazilian state of Amapá). The distinctiveness‐based rankings of the priority of areas correlated directly with those derived from species richness and species endemicity. Current conservation strategies in Amazonia, although they rely on many other criteria apart from phylogeny, are focusing on the most important areas for conservation we identified here.  相似文献   

18.
Seasonal changes in diversity and community structure of planktonic copepods at a shelf site in Sagami Bay, Japan was studied in relation to cross-shelf interaction of species components. Seasonal mesozooplankton samples were collected from the shelf station (St. M) of the north-west part of Sagami Bay from 1995 to 1997. Vertical multi-layered samples were collected near the center of Sagami Bay (St. P) in June 1996. A total 185 copepod species were identified from the two stations. We observed a clear seasonal succession in calanoid diversity and community structure at St. M from a simple shelf water community (>11 species) during spring blooming periods to highly diverse and mixed communities (ca 20–30 species) of shelf water species coupled with various Kuroshio Current species during late summer to autumn. Cluster and non-metric multidimensional scaling ordination analyses showed two distinct calanoid community groups. One group, which included samples of St. M and the surface layer of St. P, consisted of shelf water species, such as Calanus sinicus, Ctenocalanus vanus, Paracalanus spp., and Kuroshio species, such as, Canthocalanus pauper, Scolecithrix danae, etc. The other cluster was restricted to the samples collected from mid and deep layers at St. P, which consisted of meso- and bathypelagic species and Oyashio species (cold-current species, such as Neocalanus cristatus, Pseudocalanus spp., Eucalanus bungii and Metridia pacifica). In the mid and deep layers at St. P, the population of dormant copepodid stage V (CV) of Eucalanus californicus and C. sinicus were dominant. The deep CV population of C. sinicus might be ecologically discriminated from the surface and shelf water population due to their larger body length and dormant life cycle. E. californicus was also collected at the shelf site during each spring bloom period, whereas the population might descend into the mid- and deep-layers of the central bay before summer. Our results suggest that the seasonal fluctuation of community structure in the shelf water was controlled by both physical (Kuroshio Current) and biological factors, i.e., spring bloom and ontogenetic vertical migration of E. californicus. In particular, transport and diffusion processes of Kuroshio Current in Sagami Bay played a key role in controlling the shelf water calanoid community.  相似文献   

19.
Background In ecophysiology and ecotoxicology, gastropods are important both as target organisms for molluscicides and non-target organisms for environmental pollutants or other environmental stressors. With respect to both aspects, biomarkers are investigated at different levels of biological organization in order to understand mechanisms which enable gastropods to cope with or even to benefit from unfavourable environmental conditions. Main topics The paper focuses on the ecotoxicological and ecophysiological work of the author on gastropods which will be reviewed in the context of the state of knowledge in this field of research. In addition to cellular aspects in biomarker research, also biochemical responses of snails to environmental stress (stress proteins, metallothioneins, and metabolic enzymes) will be addressed. Conclusions The paper highlights the suitability of terrestrial and aquatic gastropods as sensitive indicators of environmental stress induced by chemicals or other non-chemical factors. Biomarker studies have been shown not only to be applicable in environmental risk assessment but also to provide fundamental and background knowledge necessary to understand correlations of responses at different levels of biological organization. Recommendations and perspectives A standardized toxicity test with the grapevine snail (ISO 15952) has been established for toxicity assessment in terrestrial habitats. However, freshwater gastropods display a high sensitivity as well, e.?g. to endocrine disrupters, and should be incorporated into future standardized assays for aquatic toxicity testing on the basis of existing knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号