首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Discrimination between conspecific and heterospecific signals is a key element in the evolution of pheromone-mediated communication in insects. Pheromone antagonists prevent heterospecific attraction. They are typically pheromone synergists in other species and enable specific communication in closely related species, using partly the same chemicals. In codling moth, Cydia pomonella, as in other moths, upwind flights to a pheromone/antagonist blend were slower and more convoluted than to pheromone. However, this deteriorated flight behaviour did not account for the strong decrease in male attraction. The pheromone/antagonist blend blocked instead the onset of upwind flight. This was corroborated by placing a separate source of pheromone close by, which restored male attraction. Males flying upwind did not discriminate between pheromone and the adjacent pheromone/antagonist blend, and landed on either source. This indicates differences in the neural regulation for initiating and maintaining a behavioural response to pheromone.  相似文献   

5.
The female silkmoth Bombyx mori L. emits a second pheromone component bombykal (E-10, Z-12-hexade-cadien-1-al) in addition to the well-known sexual attractant bombykol (E-10, Z-12-hexadecadien-1-ol). Bombykal stimulates its own specialized and highly sensitive olfactory cells of the male moth. Surprisingly, the aldehyde inhibits the release of the male's wing-fluttering response to bombykol.  相似文献   

6.
7.
8.
Dedicated to Marshall Noble who worked over 20 years as a volunteer in support of research at Simon Fraser University  相似文献   

9.
In this study we test one central prediction from sociogenomic theory—that social and non-social taxa share common genetic toolkits that regulate reproduction in response to environmental cues. We exposed Drosophila females of rover (for R) and sitter (for s) genotypes to an ovary-suppressing pheromone derived from the honeybee Apis mellifera. Surprisingly, queen mandibular pheromone (QMP) affected several measures of fitness in flies, and in a manner comparable to the pheromone’s normal effect on bee workers. QMP-treated sitter flies had smaller ovaries that contained fewer eggs than did untreated controls. QMP-treated rover flies, by contrast, showed a more variable pattern that only sometimes resulted in ovary inhibition, while a third strain of fly that contains a sitter mutant allele in a rover background (for s2) showed no ovarian response to QMP. Taken together, our results suggest that distinctly non-social insects have some capacity to respond to social cues, but that this response varies with fly genotype. In general, the interspecific response is consistent with a conserved gene set affecting reproductive physiology. The differential response among strains in particular suggests that for is itself important for modulating the fly’s pheromonal response.  相似文献   

10.
In the honeybee, Apis mellifera, the queen monopolizes reproduction, while the sterile workers cooperate harmoniously in nest maintenance. However, under queenless (QL) conditions, cooperation collapses and reproductive competition among workers ensues. This is mediated through aggression and worker oviposition, as well as shifts in pheromones, from worker to queen-like composition. Many studies suggest a dichotomy between conflict resolution through aggression or through pheromonal signaling. In this paper, we demonstrate that both phenomena comprise essential components of reproductive competition and that pheromone signaling actually triggers the onset of aggression. We kept workers as QL groups until first aggression was observed and subsequently determined the contestants' reproductive status and content of the mandibular (MG) and Dufour's glands (DG). In groups in which aggression occurred early, the attacked bee had consistently more queen-like pheromone in both the MG and DG, although both contestants had undeveloped ovaries. In groups with late aggression, the attacked bee had consistently larger oocytes and more queen-like pheromone in the DG, but not the MG. We suggest that at early stages of competition, the MG secretion is utilized to establish dominance and that the DG provides an honest fertility signal. We further argue that it is the higher amount of DG pheromone that triggers aggression.  相似文献   

11.
The plant bugs Lygus hesperus, Lygus lineolaris, and Lygus elisus (Hemiptera: Miridae) are major pests of many agricultural crops in North America. Previous studies suggested that females release a sex pheromone attractive to males. Other studies showed that males and females contain microgram amounts of (E)-4-oxo-2-hexenal, hexyl butyrate, and (E)-2-hexenyl butyrate that are emitted as a defense against predators. Using gas chromatography–mass spectrometry, we found that female L. lineolaris and L. elisus have a 4:10 ratio of hexyl butyrate to (E)-2-hexenyl butyrate that is reversed from the 10:1 ratio in female L. hesperus (males of the three species have ~10:1 ratio). These reversed ratios among females of the species suggest a behavioral role. Because both sexes have nearly equal amounts of the major volatiles, females should release more to attract males. This expectation was supported because L. hesperus females released more hexyl butyrate (mean of 86 ng/h) during the night (1800–0700 hours) than did males (<1 ng/h). We used slow-rotating pairs of traps to test the attraction of species to blends of the volatiles with a subtractive method to detect synergism. Each species’ major butyrate ester was released at 3 μg/h, the minor butyrate according to its ratio, and (E)-4-oxo-2-hexenal at 2 μg/h. The resulting catches of only Lygus males suggest that (E)-4-oxo-2-hexenal is an essential sex pheromone component for all three species, (E)-2-hexenyl butyrate is essential for L. elisus and L. lineolaris, and hexyl butyrate is essential for L. hesperus. However, all three components are recognized by each species since ratios of the butyrate esters are critical for conspecific attraction and heterospecific avoidance by males and thus play a role in reproductive isolation among the three species. Because L. hesperus males and females are known to emit these major volatiles for repelling ant predators, our study links defensive allomones in Lygus bugs with an additional use as sex pheromones.  相似文献   

12.
13.
14.
Suppression pheromone and cockroach rank formation   总被引:1,自引:0,他引:1  
Although agonistic behaviors in the male lobster cockroach (Nauphoeta cinerea) are well known, the formation of an unstable hierarchy has long been a puzzle. In this study, we investigate how the unstable dominance hierarchy in N. cinerea is maintained via a pheromone signaling system. In agonistic interactions, aggressive posture (AP) is an important behavioral index of aggression. This study showed that, during the formation of a governing hierarchy, thousands of nanograms of 3-hydroxy-2-butanone (3H-2B) were released by the AP-adopting dominant in the first encounter fight, then during the early domination period and that this release of 3H-2B was related to rank maintenance, but not to rank establishment. For rank maintenance, 3H-2B functioned as a suppression pheromone, which suppressed the fighting capability of rivals and kept them in a submissive state. During the period of rank maintenance, as the dominant male gradually decreased his 3H-2B release, the fighting ability of the subordinate gradually developed, as shown by the increasing odds of a subordinate adopting an AP (OSAP). The OSAP was negatively correlated with the amount of 3H-2B released by the dominant and positively correlated with the number of domination days. The same OSAP could be achieved earlier by reducing the amount of 3H-2B released by the dominant indicates that whether the subordinate adopts an offensive strategy depends on what the dominant is doing.  相似文献   

15.
16.
Host plant odours attract gravid insect females for oviposition. The identification of these plant volatile compounds is essential for our understanding of plant–insect relationships and contributes to plant breeding for improved resistance against insects. Chemical analysis of grape headspace and subsequent behavioural studies in the wind tunnel show that host finding in grapevine moth Lobesia botrana is encoded by a ratio-specific blend of three ubiquitous plant volatiles. The odour signal that attracts mated females to grape consists of the terpenoids (E)-β-caryophyllene, (E)-β-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene. These compounds represent only a fraction of the volatiles released by grapes, and they are widespread compounds known throughout the plant kingdom. Specificity may be achieved by the blend ratio, which was 100:78:9 in grape headspace. This blend elicited anemotactic behaviour in moths at remarkably small amounts. Females were attracted at release rates of only a few nanograms per minute, at levels nearly as low as those known for the attraction of male moths to the female sex pheromones.  相似文献   

17.
Chemical compounds of the foraging recruitment pheromone in bumblebees   总被引:2,自引:0,他引:2  
When the frenzied and irregular food-recruitment dances of bumblebees were first discovered, it was thought that they might represent an evolutionary prototype to the honeybee waggle dance. It later emerged that the primary function of the bumblebee dance was the distribution of an alerting pheromone. Here, we identify the chemical compounds of the bumblebee recruitment pheromone and their behaviour effects. The presence of two monoterpenes and one sesquiterpene (eucalyptol, ocimene and farnesol) in the nest airspace and in the tergal glands increases strongly during foraging. Of these, eucalyptol has the strongest recruitment effect when a bee nest is experimentally exposed to it. Since honeybees use terpenes for marking food sources rather than recruiting foragers inside the nest, this suggests independent evolutionary roots of food recruitment in these two groups of bees.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号