共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial and time variations of radon-222 concentration in the atmosphere of a dead-end horizontal tunnel 总被引:1,自引:0,他引:1
Richon P Perrier F Sabroux JC Trique M Ferry C Voisin V Pili E 《Journal of environmental radioactivity》2005,78(2):179-198
The concentration of radon-222 has been monitored since 1995 in the atmosphere of a 2 m transverse dimension, 128 m long, dead-end horizontal tunnel located in the French Alps, at an altitude of 1600 m. Most of the time, the radon concentration is stable, with an average value ranging from 200 Bq m(-3) near the entrance to about 1000 Bq m(-3) in the most confined section, with an equilibrium factor between radon and its short-lived decay products varying from 0.61 to 0.78. However, radon bursts are repeatedly observed, with amplitudes reaching up to 36 x 10(3) Bq m(-3) and durations varying from one to several weeks, with similar spatial variations along the tunnel as the background concentration. These spatial variations are qualitatively interpreted in terms of natural ventilation. Comparing the radon background concentration with the measured radon exhalation flux at the wall yields an estimate of 8+/-2 x 10(-6) s(-1) (0.03+/-0.007 h(-1)) for the ventilation rate. The hypothesis that the bursts could be due to transient changes in ventilation can be ruled out. Thus, the bursts are the results of transient increased radon exhalation at the walls, that could be due to meteorological effects or possibly combined hydrological and mechanical forcing associated with the water level variations of the nearby Roselend reservoir lake. Such studies are of interest for radiation protection in poorly ventilated underground settings, and, ultimately, for a better understanding of radon exhalation associated with tectonic or volcanic processes. 相似文献
2.
We propose a new methodology for predicting areas with a strong potential for radon (222Rn) exhalation at the soil surface. This methodology is based on the Rn exhalation rate quantification, starting from a precise characterisation of the main local geological and pedological parameters that control the radon source and its transport to the soil/atmosphere interface. It combines a cross mapping analysis of these parameters into a geographic information system with a model of the Rn vertical transport by diffusion in the soil. The rock and soil chemical and physical properties define the entry parameters of this code (named TRACHGEO) which calculates the radon flux density at the surface. This methodology is validated from in situ measurements of radon levels at the soil/atmosphere interface and in dwellings. We apply this approach to an area located in western France and characterised by a basement displaying a heterogeneous radon source potential, as previously demonstrated by lelsch et al. (J. Environ. Radioactivity 53(1) (2001) 75). The new results obtained show that spatial heterogeneity of pedological characteristics in addition to basement geochemistry--must be taken into account to improve the mapping resolution. The TRACHGEO forecasts explain the Rn exhalation variability on a larger scale and in general correlate well with in situ observations. Moreover, the radon-prone sectors identified by this approach generally correspond to the location of the dwellings showing the highest radon concentrations. 相似文献
3.
Seasonal variations of 222Rn concentrations in the air of a tunnel located in Nagano city 总被引:1,自引:0,他引:1
Muramatsu H Tashiro Y Hasegawa N Misawa C Minami M 《Journal of environmental radioactivity》2002,60(3):263-274
The seasonal variation of 222Rn concentrations in the air of tunnels constructed during World War II at Nagano City has been investigated. The determination of 222Rn concentrations in tunnel air was performed using a solid-state nuclear track detector technique. The monthly radon concentrations changed smoothly, decreasing towards winter and increasing towards summer, and it was found that the concentrations strongly correlate with the temperature difference between the inside and the outside of the tunnel. In the innermost areas of the tunnel, the maximum concentration was observed in July, its value being about 6500 Bq m (-3). The concentrations of radon in the tunnel air decrease exponentially towards the openings of the tunnel, which indicates that the radon concentration in the tunnel is basically governed by diffusion and mixing of radon gas with air. These observations lead to the conclusion that the seasonal variation of the radon concentration in the tunnel air is mainly caused by a convection current due to a stack effect induced by the temperature difference between the tunnel air and the outside air. 相似文献
4.
Frédéric Girault Bharat Prasad Koirala Frédéric Perrier Patrick Richon Sudhir Rajaure 《Journal of environmental radioactivity》2009
The Syabru-Bensi hydrothermal zone, Langtang region (Nepal), is characterized by high radon-222 and CO2 discharge. Seasonal variations of gas fluxes were studied on a reference transect in a newly discovered gas discharge zone. Radon-222 and CO2 fluxes were measured with the accumulation chamber technique, coupled with the scintillation flask method for radon. In the reference transect, fluxes reach exceptional mean values, as high as 8700 ± 1500 g m−2 d−1 for CO2 and 3400 ± 100 × 10−3 Bq m−2 s−1 for radon. Gases fluxes were measured in September 2007 during the monsoon and during the dry winter season, in December 2007 to January 2008 and in December 2008 to January 2009. Contrary to expectations, radon and its carrier gas fluxes were similar during both seasons. The integrated flux along this transect was approximately the same for radon, with a small increase of 11 ± 4% during the wet season, whereas it was reduced by 38 ± 5% during the monsoon for CO2. In order to account for the persistence of the high gas emissions during monsoon, watering experiments have been performed at selected radon measurement points. After watering, radon flux decreased within 5 min by a factor of 2–7 depending on the point. Subsequently, it returned to its original value, firstly, by an initial partial recovery within 3–4 h, followed by a slow relaxation, lasting around 10 h and possibly superimposed by diurnal variations. Monsoon, in this part of the Himalayas, proceeds generally by brutal rainfall events separated by two- or three-day lapses. Thus, the recovery ability shown in the watering experiments accounts for the observed long-term persistence of gas discharge. This persistence is an important asset for long-term monitoring, for example to study possible temporal variations associated with stress accumulation and release. 相似文献
5.
Perrier F Richon P Crouzeix C Morat P Le Mouël JL 《Journal of environmental radioactivity》2004,71(1):17-32
Radon-222 activity concentration has been monitored since 1999 in an underground limestone quarry located in Vincennes, near Paris, France. It is homogeneous in summer, with an average value of 1700 Bq m(-3), and varies from 730 to 1450 Bq m(-3) in winter, indicating natural ventilation with a rate ranging from 0.5 to 2.4 x 10(-6) s(-1) (0.04-0.22 day(-1)). This hypothesis is supported by measurements in the vertical access pit where, in winter, a turbulent air current produces a stable radon profile, smoothly decreasing from 700 Bq m(-3) at 20 m depth to 300 Bq m(-3) at surface. In summer, a thermal stratification is maintained in the pit, but the radon-222 concentration jumps repeatedly between 100 and 2000 Bq m(-3). These jumps are due to atmospheric pressure pumping, which induces ventilation in the quarry at a rate of about 0.1 x 10(-6) s(-1) (0.009 day(-1)). Radon-222 monitoring thus provides a dynamical characterisation of ventilation regimes, which is important for the assessment of the long-term evolution of underground systems. 相似文献
6.
Seasonal variations of Rn concentrations in the air of a tunnel located in Nagano city 总被引:2,自引:0,他引:2
H. Muramatsu Y. Tashiro N. Hasegawa C. Misawa M. Minami 《Journal of environmental radioactivity》2002,60(3):1070-274
The seasonal variation of 222Rn concentrations in the air of tunnels constructed during World War II at Nagano City has been investigated. The determination of 222Rn concentrations in tunnel air was performed using a solid-state nuclear track detector technique. The monthly radon concentrations changed smoothly, decreasing towards winter and increasing towards summer, and it was found that the concentrations strongly correlate with the temperature difference between the inside and the outside of the tunnel. In the innermost areas of the tunnel, the maximum concentration was observed in July, its value being about 6500 Bq m (-3). The concentrations of radon in the tunnel air decrease exponentially towards the openings of the tunnel, which indicates that the radon concentration in the tunnel is basically governed by diffusion and mixing of radon gas with air. These observations lead to the conclusion that the seasonal variation of the radon concentration in the tunnel air is mainly caused by a convection current due to a stack effect induced by the temperature difference between the tunnel air and the outside air. 相似文献
7.
Radon-222 exhalation from the ground surface depends upon a number of variables such as the 226Ra activity concentration and its distribution in soil grains; soil grain size; soil porosity, temperature and moisture; atmospheric pressure, rainfall and temperature. In this study, 222Rn exhalation flux density measurements within and around the Ranger uranium mine in northern Australia were performed to investigate the effect of these variables within a tropical region. Measurements were taken at the waste rock dumps, ore stockpiles, mine pits, and at sites where effluent water with elevated 226Ra concentration has been spray irrigated over land, as well as at sites outside the mine. The sites selected represented a variety of geomorphic regions ranging from uranium-bearing rocks to ambient soils. Generally, wet season rains reduced 222Rn exhalation but at a few sites the onset of rains caused a step rise in exhalation flux densities. The results show that parameters such as 226Ra activity concentration, soil grain size and soil porosity have a marked effect on 222Rn flux densities. For similar geomorphic sites, 226Ra activity concentration is a dominant factor, but soil grain size and porosity also influence 222Rn exhalation. Surfaces with vegetation showed higher exhalation flux densities than their barren counterparts, perhaps because the associated root structure increases soil porosity and moisture retention. Repeated measurements over one year at eight sites enabled an analysis of precipitation and soil moisture effects on 222Rn exhalation. Soil moisture depth profiles varied both between seasons and at different times during the wet season, indicating that factors such as duration, intensity and time between precipitation events can influence 222Rn flux densities considerably. 相似文献
8.
Radon (222Rn) level variations on a regional scale: influence of the basement trace element (U, Th) geochemistry on radon exhalation rates 总被引:2,自引:0,他引:2
Ielsch G Thiéblemont D Labed V Richon P Tymen G Ferry C Robé MC Baubron JC Béchennec F 《Journal of environmental radioactivity》2001,53(1):75-90
The approach proposed in this study provides insight into the influence of the basement geochemistry on the spatial distribution of radon (222Rn) levels both at the soil/atmosphere interface and in the atmosphere. We combine different types of in situ radon measurements and a geochemical classification of the lithologies, based on 1/50,000 geological maps, and on their trace element (U, Th) contents. The advantages of this approach are validated by a survey of a stable basement area of Hercynian age, located in South Brittany (western France) and characterized by metamorphic rocks and granitoids displaying a wide range of uranium contents. The radon source-term of the lithologies, their uranium content, is most likely to be the primary parameter which controls the radon concentrations in the outdoor environment. Indeed, the highest radon levels (> or = 100 Bq m-3 in the atmosphere, > or = 100 mBq m-2 s-1 at the surface of the soil) are mostly observed on lithologies whose mean uranium content can exceed 8 ppm and which correspond to peraluminous leucogranites or metagranitoids derived from uraniferous granitoids. 相似文献
9.
A common approach for remediation of groundwater contamination with volatile organic compounds (VOCs) is contaminant stripping by means of in situ air sparging (IAS). For VOC stripping, pressurized air is injected into the contaminated groundwater volume, followed by the extraction of the contaminant-loaded exhaust gas from the vadose soil zone and its immediate on-site treatment. Progress assessment of such remediation measure necessitates information (i) on the spatial range of the IAS influence and (ii) on temporal variations of the IAS efficiency. In the present study it was shown that the naturally occurring noble gas radon can be used as suitable environmental tracer for achieving the related spatial and temporal information. Due to the distinct water/air partitioning behaviour of radon and due to its straightforward on-site detectability, the radon distribution pattern in the groundwater can be used as appropriate measure for assessing the progression of an IAS measure as a function of space and time. The presented paper discusses both the theoretical background of the approach and the results of an IAS treatment accomplished at a VOC contaminated site lasting six months, during which radon was applied as efficiency indicator. 相似文献
10.
In controlling the natural radiation exposure for the residents of dwellings, it is necessary to determine the levels of natural radioactivity (external exposure) and radon exhalation rate (internal exposure) from building materials. Using a high-resolution gamma ray spectrometry system, the activity concentration of natural radionuclides was measured. The radon exhalation rate was measured by hermetically closing the sample in a container and following the radon activity growth as a function of time. Three different methods were applied in order to find the most appropriate, i.e. that with the less uncertainty for the less exposure time. Typical building materials were analyzed in order to examine the external and internal exposures. In addition, the total annual effective dose was evaluated for the residents of a typical Greek dwelling. 相似文献
11.
A Baeza J Paniagua M Rufo J Guillén A Sterling 《Journal of environmental radioactivity》2001,55(3):283-302
We made quarterly determinations of the transfer coefficients and effective transfer coefficients for the radionuclides 137Cs, 90Sr, 40K, 226Ra, 228Ra and 228Th over a full annual cycle, in a Mediterranean grazing-land ecosystem. The input and output fluxes of the radionuclides between the different compartments of this ecosystem were quantified for the following processes: root uptake; variation in root and aerial biomass; pasture production; translocation; leaf fall; efflux due to grazing action; resuspension and subsequent aerial deposition of radionuclides. We observed there to be a marked seasonal variation for this type of ecosystem in both the transfer coefficients and the radionuclide fluxes, which impedes the soil-plant transfer being characterized on the basis of values that are constant with time. 相似文献
12.
A case study of the regional transport ( approximately 3000 km) of radon-222 ((222)Rn) from continental North-East Asia to the Japanese islands was performed by numerical analysis using five separate source areas (South, Middle and North China, Russia and Korea), while a seasonal northwest wind blew over the Japan Sea. The results for three periods (Term I: 16-18, Term II: 22-25 and Term III: 27-28 in December 1990) were compared with concentrations measured at the Kanazawa site (near the coast of the Japan Sea facing the seasonal wind) and the Nagoya site (overland and downwind on the shores of the Pacific Ocean). Most of the (222)Rn at the Kanazawa site was calculated to come from North China and Korea in Term I, Middle China, North China, and Korea in Term II, and Russia and Korea in Term III. The considerable differences in the origins of (222)Rn emanated from the continent were estimated between Terms I, II and III, even though the similar northwest wind was dominant over the Japan Sea. A contour line analysis indicated movement of (222)Rn emanated from Middle China in a northerly direction first and then a southeasterly direction, resulting from low pressure. The results suggest that the low-pressure systems play an important role in the transport of (222)Rn in North-East Asia. 相似文献
13.
A radiochemical method for simultaneous separation of 226Ra and 228Ra from natural waters by precipitating the radionuclides in the form of chromates that have low solubility in weak acetic acid has been described. For analytical purposes the change into soluble state was achieved through high-temperature melting the radium chromates precipitate with sodium and potassium carbonates at certain ratios. The chemical yield for radium-226 amounted to 87.1 ± 1.4% at the efficiency of counting 92.8 ± 0.7%. Calculated in series of 20 parallel determinations, reproducibility of the method was 7%. The chemical yield in separating radium-228 made up 63.8 ± 1.1%. 相似文献
14.
Petropoulos NP Anagnostakis MJ Simopoulos SE 《Journal of environmental radioactivity》2002,61(3):257-269
High concentrations of natural radionuclides in building materials can result in high dose rates indoors, from both internal and external exposure. In dose calculations, the main radionuclides of interest are 226Ra, 232Th and 40K. Usually much attention is paid to 226Ra due to 222Rn exhalation and the subsequent internal exposure. Other radionuclides of the uranium series such as 238U and 210Pb, emitting low energy photons are not usually determined and an assumption of radioactive equilibrium is made. The above assumption is seldom checked mainly because of the difficulties in the gamma-spectroscopic analysis of low energy photons. For the determination of radionuclides emitting low-energy photons, in samples like building materials where intense self-absorption of the photons exists, a method for self-absorption correction has been developed. The method needs as input the linear attenuation coefficient mu for the material under analysis. This paper presents: 1. Correlations in the form mu = f(rho,E) developed for the estimation of the linear attenuation coefficient mu (cm(-1)), as a function of the material packing density p (g cm(-3)) and the photon energy E (keV), for building materials as well as other materials of environmental importance. 2. Gamma-spectroscopic analysis techniques used for the determination of 238U, 226Ra, 210Pb, 232Th and 40K in environmental samples, together with the results obtained from the analysis of building materials used in Greece, and industrial by-products used for the production of building materials. Among the techniques used, one is based on the direct determination of 226Ra and 235U from the analysis of the multiplet photopeak at approximarely186 keV. 3. Results from radon exhalation measurements of building materials such as cement and fly-ash and building structures conducted in the radon chambers in our Laboratory. Based on the above results, dosimetric calculations are also reported. 相似文献
15.
Colmenero Sujo L Montero Cabrera ME Villalba L Rentería Villalobos M Torres Moye E García León M García-Tenorio R Mireles García F Herrera Peraza EF Sánchez Aroche D 《Journal of environmental radioactivity》2004,77(2):205-219
High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv. 相似文献
16.
Ahmed AA Mohamed A Ali AE Barakat A Abd El-Hady M El-Hussein A 《Journal of environmental radioactivity》2004,77(3):275-283
During a one year period, from Jan. 2002 up to Dec. 2002, approximately 130 air samples were analyzed to determine the atmospheric air activity concentrations of short- and long-lived (222Rn) decay products 214Pb and 210Pb. The samples were taken by using a single-filter technique and gamma-spectrometry was applied to determine the activity concentrations. A seasonal fluctuation in the concentration of 214Pb and 210Pb in surface air was observed. The activity concentrations of both radionuclides were observed to be relatively higher during the winter/autumn season than in spring/summer season. The mean activity concentration of 214Pb and 210Pb within the whole year was found to be 1.4+/-0.27 Bq m(-3) and 1.2+/-0.15 mBq m(-3), respectively. Different 210Pb:214Pb activity ratios during the year varied between 1.78 x 10(-4) and 1.6 x 10(-3) with a mean value of 8.9 x 10(-4) +/- 7.6 x 10(-5). From the ratio between the activity concentrations of the radon decay products 214Pb and 210Pb a mean residence time (MRT) of aerosol particles in the atmosphere of about 10.5+/-0.91 d could be estimated. The seasonal variation pattern shows relatively higher values of MRT in spring/summer season than in winter/autumn season. The MRT data together with relative humidity (RH), air temperature (T) and wind speed (WS), were used for a comprehensive regression analysis of its seasonal variation in the atmospheric air. 相似文献
17.
Reconnaissance of submarine groundwater discharge at Ubatuba coast,Brazil, using 222Rn as a natural tracer 总被引:1,自引:0,他引:1
Oliveira J Burnett WC Mazzilli BP Braga ES Farias LA Christoff J Furtado VV 《Journal of environmental radioactivity》2003,69(1-2):37-52
Submarine groundwater discharge (SGD), which includes fresh groundwater and recycled seawater, has been recognized as a widespread phenomenon that can provide important chemical elements to the ocean. Several studies have demonstrated that SGD may approach or even exceed freshwater sources in supplying nutrients to coastal zones. This work reports preliminary results of a study carried out in a series of small embayments of Ubatuba, S?o Paulo State, Brazil, covering latitudes between 23 degrees 26'S and 23 degrees 46'S and longitudes between 45 degrees 02'W and 45 degrees 11'W. The main aims of this research were to set up an analytical method to assess 222Rn and 226Ra activities in seawater samples and to apply the excess 222Rn inventories obtained to estimate SGD. Measurements made during the summer of 2001 included 222Rn and 226Ra in seawater, 226Ra in sediment, seawater and sediment physical properties, nutrients and seepage rates. A continuous 222Rn monitor was also used to determine in situ collection of data to study short-term changes at one location. All methods indicated significant inflow of subsurface fluids at rates in excess of several cm per day. 相似文献
18.
19.
Coal and its by products often contain significant amounts of radionuclides, including uranium which is the ultimate source of the radioactive gas radon. Burning of coal and the subsequent emission to the atmosphere cause the re-distribution of toxic trace elements in the environment. Due to considerable economic and environmental importance and diverse uses, the collected fly ash has become a subject of worldwide interest in recent years. In the present study, radon exhalation rate and the activity concentration of (238)U, (232)Th and (40)K radionuclides in fly ash samples from Durgapur thermal power plant (WB) have been measured by "Sealed Can technique" using LR-115 type II detectors and a low level NaI (Tl) based gamma ray spectrometer, respectively. Radon exhalation rate varied from 360.0 to 470.0 mBq m(-2)h(-1) with an average value of 406.8 mBq m(-2)h(-1). Activity concentrations of (238)U ranged from 84.8 to 126.4 Bq kg(-1) with an average value of 99.3Bqkg(-1), (232)Th ranged from 98.1 to 140.5 Bq kg(-1) with an average value of 112.9 Bq kg(-1) and (40)K ranged from 267.1 to 364.9 Bq kg(-1) with an average value of 308.9 Bq kg(-1). Radium equivalent activity obtained from activity concentrations is found to vary from 256.5 to 352.8 Bq kg(-1) with an average value of 282.5 Bq kg(-1). Absorbed gamma dose rates due to the presence of (238)U, (232)Th and (40)K in fly ash samples vary in the range 115.3-158.5 nGy h(-1) with an average value of 126.4 nGy h(-1). While the external annual effective dose rate varies from 0.14 to 0.19 mSv y(-1) with an average value of 0.15 mSv y(-1), effective dose equivalent estimated from exhalation rate varies from 42.5 to 55.2 microSv y(-1) with an average value of 47.8 microSv y(-1). Values of external hazard index H(ex) for the fly ash samples studied in this work range from 0.69 to 0.96 with a mean value of 0.77. 相似文献
20.
Baskaran M Hong GH Dayton S Bodkin JL Kelley JJ 《Journal of environmental radioactivity》2003,64(1):1-18
Marine mammals being among the top predators in the food web tend to accumulate organic and inorganic contaminants from the environment. The body burden of contaminants in these species could reflect their foods and thus contaminant levels could serve as proxies on the changes of ecosystem. A pilot study was carried out to investigate the possibility of radionuclide leakage at Amchitka using a suite of sea otter (Enhydra lutris) skulls collected near Amchitka nuclear test-sites before (1950s) and after the testing (1990s), and at Adak, another Aleutian Island, about 300 km from Amchitka, where the potential impact of radionuclide leakage from Amchitka is expected to be negligible. In addition, the naturally occurring and anthropogenic radionuclide content on the sea otter skull was also utilized to investigate if there was any significant ecosystem changes in the environment. Concentration of 210Pb in sea otter bones collected during the 1950s was significantly higher than those collected in the 1990s. We propose that among the various factors that could cause this higher enrichment in 210Pb, changes in the sea otter prey is the most likely one. Comparison of the 137Cs, 90Sr, 239,240Pu concentrations appear not to be significantly higher in sea otter skulls collected in 1990s from Amchitka where the underground tests in 1965-71 than those from Adak, although significant differences were detected among different groups collected at various times. 相似文献