首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Dinoflagellates, which comprise an important part of the phytoplankton in the neritic region of the Southern California Bight, are known to be grazed byCalanus pacificus; rates of ingestion, development and survival of nauplii are influenced by the food quality of dinoflagellates. We have examined the effects of dinoflagellate food quality on reproduction ofC. pacificus females sampled in La Jolly Bay (32°N; 117°W) between 6 April and 4 May 1988. Four sets of experiments were conducted in which copepods were fed five different species:Gymnodinium splendens, Gyrodinium resplendens., G. dorsum, Exuviella mariae lebourae andGymnodinium simplex. These species were selected on the criterion of their success in supporting the growth of nauplii in previous rearing experiments. The experimental culture concentration was maintained at 100µg C 1–1, near that of the natural seston. As indices of successful reproduction, we measured the percentage of spawning females and the number of eggs laid per female per day. Laboratory results were compared to stages of ovarian maturation of wild females. Four stages of maturation were determined using histological and microscopic observations.Gymnodinium splendens, Exuviella mariae lebourae, andG. simplex yielded clearly inferior results: few females were able to lay eggs repetitively over the first few days of confinement.Gyrodinium resplendens and, above all,G. dorsum yielded the best results. The stage of sexual maturation in situ appears to influence the rhythmicity of egg-laying events. In the presence of high-quality food, females are able to maintain high reproductive rates by sustaining the maturation of successive batches of eggs; good food quality appears to assure this secondary vitellogenesis and the rapid turnover of ovocytes.  相似文献   

2.
Larvae were hatched from ovigerous Dungeness crabs, Cancer magister, collected from Puget Sound Basin, Washington, USA, in April, 1986, and the effects of temperature on rates of survival and development were studied for each of the five zoeal stages both in small batch-culture and in individual culture. Culture method had little effect on the results at 10°, 15°, and 20°C. Increased mortality was measured at all stages at 20°C, with 100% mortality occurring during the terminal fifth stage. Fifth stage larvae may also show higher mortality at 15°C than at 10°C. Stage duration varied inversely with temperature at all stages, although differences between 10° and 15°C were greater than between 15° and 20°C. The results indicate that survival and stage duration are independent of the values for the previous and subsequent stages, that variability among larvae in instar duration increases with temperature, and that the terminal fifth zoeal stage is the most sensitive to temperature stress. Duration of a late zoeal instar is not related to its earlier development rate nor can early development rates be used to predict whether individual zoeae will successfully develop to the megalopa. Measurements of megalopa dry weights indicate no differences due either to previous culture temperatures or to total time to the megalopa. Predictive models of larval transport that require estimates of larval duration should account for both changes in temperature response that can affect individual stage duration, and variability among individuals in stage duration that can influence the degree of larval dispersion.  相似文献   

3.
For clonal taxa, the reduced genetic variability associated with clonal proliferation is hypothesized to reduce the ability to respond to variable conditions, unless a general-purpose genotype (GPG) confers success in multiple environments. In this study, Corynactis californica (Carlgren 1936) from the subtidal of California was used as a model system to test the hypothesis that clones dampen fluctuations in fitness through a GPG that facilitates phenotypic plasticity. To achieve this goal, tissue composition, respiration, excretion, and growth were compared among clones of C. californica at one site, and a reciprocal transplant experiment was used to test the response of clones to differing conditions at two sites. All experiments were completed at Santa Catalina Island (N 33°25′, W 118°30′) between April and September 1991. Clones at a single site differed significantly in multiple traits, varying as much as 1.6-fold in protein content, 3.4-fold in respiration, and 3.5-fold in excretion. Interestingly, while tissue growth was the most labile trait (differing up to 35.4-fold among clones), polyp fission rates were not significantly different among clones, in part because fission continued even though tissue growth was unable to restore polyp size in between divisions. Partial energy budgets revealed that the majority (47–90%) of the daily energy expenditure was accounted for by respiration, 13–47% by growth, and 0.3–14% by excretion. In the transplant experiment, reaction norms revealed strong effects of the environment on some traits but not others, notably with growth differing between sites in a pattern that differed among clones, and excretion differing between sites; neither respiration nor fission were affected by transplantation. Partial energy budgets revealed that the energy allocation to respiration varied between sites in a pattern that differed among clones, and a similar trend was evident for tissue growth. Together, these results demonstrate that clones of C. californica have markedly different phenotypes and exploit phenotypic plasticity to maintain relatively constant fission rates, even though tissue growth varies greatly among clones and between environments. While these findings support the GPG hypothesis for clones of C. californica—at least based on relative fitness achieved through asexual proliferation—this conclusion depends on the extent to which polyps are successful when they have low rates of tissue growth.  相似文献   

4.
Samples of an intertidal zoanthid, Zoanthus coppingeri, Haddon and Shackelton, 1891, were collected from three localities in the Great Barrier Reef region during 1992–1993, and subjected to allozyme electrophoretic analysis at seven polymorphic loci. The reduced ratio of observed to expected genotypic diversity indicated that populations were partly clonal, but they were not dominated by a few clones as occurs in some other cnidarians. Regular disturbance by wave action is postulated to prevent the formation of large stands of particular clones by clearing space and mixing genotypes over small scales. The sexual origin of clonal genotypes was confirmed by conformance to Hardy-Weinberg predictions of genotype frequencies at all but one locus. Values of the standardised genetic variance among populations, F ST , were highly significant between localities and between replicate sites within localities separated by only 50 m. Strong genetic structure has not previously been described in a Great Barrier Reef invertebrate species, and is considered to be the consequence of stochastic changes in gene frequencies as a result of low levels of gene flow. High clonal longevity and low recruitment rates may maintain genetic differences over long periods. Similar effects may be seen in other Great Barrier Reef invertebrate species with comparable reproductive patterns.  相似文献   

5.
Laboratory production during the life span of Euphausia pacifica was measured directly (as the sum of growth, molting and reproduction) and indirectly (as assimilation minus metabolism and leakage) to test the hypothesis that weight-specific production is a constant for all sizes. Euphausiids were collected in Puget Sound, Washington State, USA, from September 1973 to March 1978. Equations were determined (in terms of carbon and nitrogen at 8° and 12° C) expressing the relationships between body weight and the daily rates of growth, molting, reproduction, ingestion and metabolism. The allometric equation (R=aW b ) best related body weight (W) to the rate (R) for growth, molting, ingestion, respiration and excretion for life stages from late larvae through adults. As predicted by the original above hypothesis, the weight-specific coefficient (b) was close to 1.0 for ingestion and excretion; in contrast, b was 0.62 for growth, and 0.77 to 0.85 for molting and respiration. The Q10 s also varied: 3.5 for growth, 2.4 for molting, about 3.0 for ingestion, and 2.0 for respiration and excretion. Assimilation efficiencies, for all weights and at both temperatures, were 81.3% of carbon and 85.9% of nitrogen ingested. The relationships between rate and body weight of early larvae for growth and molting were linear, as was the relationship for reproduction in adults. Weight-specific production was higher by I to 2% at 12° than 8° C for all life stages, and was 2 to 4% for carbon and 2 to 6% for nitrogen in adults, but 13 to 17% for carbon and 14 to 15% for nitrogen in early furcilia larvae. The null hypothesis was rejected for production measured directly, but would have been accepted if only an indirect measurement of nitrogen production had been considered. Clearly, indirect measurement incorporates all errors of measurement and assumption and makes interpretation difficult.  相似文献   

6.
The influence of 49 combinations of salinity (10–40 S, at 5 S intervals) and temperature (0°–30°C, at 5C° intervals) on the maximum daily division rate (K) and 18 combinations of light intensity (six levels) and temperature (5°, 15°, and 25°C) on photosynthesis, cell division, and chlorophyll a was examined using two clones of Thalassiosira rotula Meunier isolated from the upwelling area of Baja California (clone C8) and from Narragansett Bay, Rhode Islands (clone A8). Physiological differences appear to characterize these to clones with regard to their temperature tolerance (C8 5°–30°C, A8 0°–25°C), maximum growth rate (C8 K=2.9, A8 K=2.4), chlorophyll a content, and in the rates of growth and photosynthesis in response to light intensity and temperature. Optimum salinity for both clones (25–30 S) was generally independent of temperature, while chlorophyll a content decreased with temperature. T. rotula is a cosmopolitan paractic species; experimental studies indicate that it is eurythermal and moderately euryhaline. Comparison of five additional Narragansett Bay isolates of T. rotula reveal minimal spacial or temporal variability in genetically determined physiological characteristics within this local population.  相似文献   

7.
The morphological characteristics and the population genetic structures of the fissiparous seastar Coscinasterias acutispina were investigated for eight sites in the Sea of Japan in order to clarify the presence of sexual and asexual reproduction. Morphological observation based on arm length showed that fission was common at all eight sites examined, indicating the likely production of clonal individuals. A random amplified polymorphic DNA (RAPD) marker was used to detect clones arising by fission and to assess gene flow among sites. A simulation approach using RAPD data revealed the presence of clonal individuals at almost all sites, suggesting the existence of asexual reproduction. The result of phylogenetic analysis according to RAPD genotype showed no relationship between genetic and geographic distances. Considering the limited movement ability of seastar species during the adult phase, these observations suggest the existence of marked gene flow among sites, due to dispersal of planktonic larvae produced by sexual reproduction. These observations suggest that multi-locus genotypic compositions depend on the relative amounts of recruitment from sexual and asexual reproduction in each population.  相似文献   

8.
Several species of Antarctic mesopelagic fishes that have different minimal depths of occurrence but the same environmental temperature were collected in November–December 1983 and in March 1986 between 0 and 1 000 m in the open water near the marginal ice zone in the vicinity of 60°S 40°W (1983) and 65°S 46°W (1986), and oxygen consumption rate (V O 2) and the activity of two metabolic enzymes, lactate dehydrogenase (LDH, an indicator of the anaerobic potential of locomotory muscle) and citrate synthase (CS, an indicator of citric acid cycle activity or aerobic potential), were determined. In four dominant species, whole-individual oxygen-consumption rate (y, ml O2 individual–1 h–1) varied with weight (X, g) according to the equation y=aX b, with b values falling between 0.889 and 1.029. The relation of weight-specific LDH activity (y, U g–1 wet wt) with weight (x, g) was also described by the equation y=aX b, with b values varying between 0.229 and 1.025. Weight-specific CS activity declined with weight, with b values from-0.031 to-0.369. V 2 O, LDH activity and CS activity all declined markedly with increased species' minimum depth of occurrence (the depth below which 90% of a species' population lives). Comparisons with previous studies on ecologically equivalent species of the California Borderland indicate that depth-related decreases in metabolism are the result of adapted traits of deeper-living species, not declining temperature within the water column. The metabolic rate of Antarctic mesopelagic fishes is approximately twice that of California species at equivalent temperatures; similar rates were found at the normal habitat temperatures of the two groups. Thus, a well-developed compensation for temperature is present in the Antarctic fishes: cold adaptation. Differences in enzymic activity among species, and among different sized individuals of a species are related to differences in metabolic rate and locomotory capacity. Enzymic indices can be used to estimate metabolic rates and evaluate ecological parameters such as predatory strategies and niche separation.  相似文献   

9.
The multivoltine, estuarine amphipodGammarus lawrencianus has four generations per year in an environment where temperatures range seasonally from –1° to 25°C. Temperature-response curves for rates of brood production and development were determined by laboratory experiments and field observation. The life history and population dynamics were observed over a full annual cycle (1981) for a field population located at Rocky Run, Porter's Lake, Nova Scotia, Canada. On a natural (i.e., sidereal) time scale, the generations appear to have very different life histories: the two summer generations have short lives, rapid development and mature at small size (classicr-selection), whereas the overwintering generations have relatively low rates of mortality, slow development and mature at large size (classicK-selection). This pattern (larger size at maturity at lower temperatures) is widespread in aquatic poikilotherms. Similar life-history differences are evident among cohorts of the summer generations that mature at different temperatures. When time is expressed on a physiological scale that removes the effect of temperature on embryonic development and reproductive rate, the variation within and among generations is greatly reduced. In particular, an apparent alternation betweenr- andK-selection largely disappears. Because the generations are temporally isolated, it might be surmised that natural selection acting on the summer generations might antagonize the effects of natural selection acting on the fall and winter generations. However, the scaling of the rates of development, maturation, growth, reproduction and mortality on the physiological time scale derived from the temperature dependence of development and reproductive rate gives a very different and more homogeneous pattern.  相似文献   

10.
On the near-surface plankton of the eastern South Pacific Ocean   总被引:1,自引:0,他引:1  
A study has been made of the plankton of the near-surface water layer (0 to 30 cm) of the eastern South Pacific Ocean in the region lying to the east of the meridian 90°W, between latitudes 5°N and 35°S. This region is influenced by the Peru Current: the current brings water from high latitudes, which results in a decrease in the number of species of the local fauna of copepods of the family Pontellidae, typical of tropical near-surface plankton. Some of the widely tropical and one bicentral species are absent or rare. Least affected by the Peru Current are the waters of equatorial structure in the northern part of the region. Here, 7 species of pontellids were recorded: the widely tropical Labidocera detruncata, Pontella tenuiremis, Pontellopsis regalis, the distant-neritic Pontella danae and Labidocera acuta, the bicentral Labidocera acutifrons, and the neritic Pontellopsis lubbockii. The dominant species among these are L. detruncata and L. acuta. To the west of the convergence, in the southern part of the region, live the southern central species Pontella valida and P. whiteleggei, with Pontellopsis regalis occurring occasionally. In these regions the copepod fauna is frequently dominated by pontellids. To the south of the boundary of the waters of equatorial structure, between the coast of South America and the line of convergence, lies a region most subjected to the effect of waters from high latitudes and of upwellings. It is inhabited by 2 pontellids only: Pontellopsis regalis and Labidocera acutifrons, but they too disappear close to the coast. In this particular region the copepods Calanus australis and Centropages brachiatus are common; they are found in a thicker water layer (0 to 200 m), and are often more abundant than the pontellids.  相似文献   

11.
In situ diel feeding behavior of neritic copepods was investigated using the gut fluorescence method, during spring and fall bloom periods in Akkeshi Bay, on the eastern coast of Hokkaido, Japan. Acartia omorii and Paracalanus sp. were the dominant species during the fall, and Pseudocalanus spp. and A. longiremis during the spring. During both bloom periods, diel rhythms were always observed for the gut pigment contents of these dominant copepods, although there were interspecific differences in the pattern. The maximum gut pigment content was always observed during the night and the minimum during the day. For all species, except Paracalanus sp., the average gut pigment content during the night was significantly higher (p<0.05) than during daytime by factors of between 1.5 and 2.7. There were no significant differences between the gut evacuation rate constants determined during the day and the night, and initial gut pigment content had no effect on the value of gut evacuation rate constants. The instantaneous ingestion rates of individual copepods calculated from gut pigment and the mean value of gut evacuation rate constants followed the same diel rhythms as gut pigment contents. Copepod daily ingestion rates were higher than the daily requirements for respiration during both bloom periods. Estimated daily ration was 40 to 91% of body carbon during the fall bloom, and 17 to 28% during the spring bloom. The higher daily rations during fall were probably due to the difference in in situ temperature (ca. 14°C).  相似文献   

12.
The bioenergetic basis of the biannual reproductive cycle of the solitary tunicate Styela plicata was investigated in order to evaluate hypotheses concerning the lack of larval settlement in summer. The rate of ingestion and absorption efficiency were measured in order to provide an estimate of the rate at which material was made available for maintenance, growth, and reproduction. At a given temperature the rate of ingestion was proportional to the 0.7 power of wet mass. the ingestion rate increased rapidly with increasing temperature between 12° and 18°C (Q103), but was independent of temperature between 18° and 28°C. Absorption efficiency was independent of temperature and body size and averaged approximately one-third for both carbon and nitrogen. Metabolic maintenance costs were estimated from measurements of oxygen consumption and excretion of ammonia and urea reported for s. plicata. These require only 18±11% of the carbon and 37±22% of the nitrogen absorbed from the gut of S. plicata over the temperature range 12° to 28°C. Metabolic maintenance makes no excessive demands on the material absorbed in the gut at a particular time of year, and a surplus of carbon and nitrogen substrate is available throughout the year for growth and reproduction. Predation on larvae and young adults may be responsible for the low rate of settlement observed in summer months.  相似文献   

13.
Four species of estuarine benthic diatoms: Amphiprora c. f. paludosa W. Smith, Nitzschia c. f. dissipata (Kützing) Grunow, Navicula arenaria Donkin, and Nitzschia sigma (Kützing) W. Smith were grown in unialgal cultures. The growth rates of the diatoms were determined as the rate of increase of the chlorophyll a content of the cultures. The diatoms were cultured at different combinations of temperture, daylength, and quantum irradiance. The highest growth rates of Navicula arenaria occurred at 16° to 20°C; the other 3 species had their optimum at 25°C or higher. The small-celled species had higher growth rates at their optimum temperature, but at lower temperatures the growth rates of all 4 species became very similar. The minimum daily quantum irradiance that could effect light-saturated growth at 12° and 20°C ranged from 2.5 to 5.0 E.m-2.day-1. At 12°C, two species had their highest growth rates under an 8 h daily photoperiod. At 20°C, the three species tested all had highest growth rates under 16 h daily photoperiod. The growth response of the benthic diatoms is comparable to that of several cultures of planktonic diatoms, as described in the literature. The influence of temperature and quantum irradiance on the diatoms in the present investigation was comparable to the influence of temperature and light intensity on the 14C-fixation of marine benthic diatoms (Colijn and van Buurt, 1975).  相似文献   

14.
The seasonal growth and reproduction of Codium fragile were studied at Boothbay Harbor, Maine, and at Woods Hole and Wings Neck, Massachusetts (USA), in relation to several environmental parameters. Maximum growth and reproduction occur during periods of highest water temperatures and insolation. The effects of various light intensities and temperatures on the photosynthesis rates of C. fragile were determined and correlated with the field results. Optimal conditions for net photosynthesis are 21° to 24°C and 900 to 1100 foot-candles. It is suggested that C. fragile is a warm-temperate plant that is growing near its northern limits in New England, but one that has not extended to its potential southern limits.Published with the approval of the Director of the New Hampshire Agricultural Experiment Station as Scientific Contribution Number 625.  相似文献   

15.
The difference in morphology between zoeae of Cancer magister Dana from Alaskan and Californian waters was documented to determine if the morphological variation is attributable to environmental influences. First-stage zoeae from Alaska have significantly longer carapace spines than zoeae from central California. The dorsal, rostral and lateral carapace spines were 14, 14 and 29% longer, respectively, in the Alaskan zoeae. The effect of temperature was tested on zoeal morphology as it is an obvious environmental difference between Alaskan and Californian waters. Ovigerous female crabs collected in southeastern Alaska in 1984 were held at 1°, 5°, 10° and 15° C until hatching occurred. Eggs were sampled seven times during the incubation period, and relative mortality, egg diameter and development stage were measured. All of the crabs and eggs at 1° C died before hatching occurred. Egg mortality averaged less than 2% in the other temperature treatments. Egg diameter increased significantly over the incubation period for all temperatures. Developmental rate of the embryos was inversely related to temperature. Hatching first occurred in 42 d at 15° C, 60 at 10° C and 160 d at 5° C. Newly hatched zoeae were collected and body length, dorsal, rostral and lateral carapace spines were measured. Significant differences existed between all temperatures for all spine lengths, with longer spines occurring at lower temperatures. Zoeal body lengths were also significantly different between the three temperatures. The results of this study question the use of spine lengths to distinguish similar larval species.  相似文献   

16.
The energetics of feeding has been investigated in demersal fish with similar sedentary lifestyles from the Antarctic (Notothenia neglecta Nybelin), North Sea (Myoxocephalus scorpius L.) and Indian Ocean (Cirrhitichys bleekeri Bleeker). In general, the metabolic rates of fasting individuals were positively correlated with adaptation temperature: values for a standard 100 g fish (mg O2/h) were 3.3 for N. neglecta at around 0 °C, 2.7 for winter-acclimatized M. scorpius at 5 °C, 4.3 for summer-acclimatized M. scorpius at 15 °C, and 7.0 for C. bleekeri at 25 °C. In all species, following a single satiating meal, oxygen consumption increased to a peak of 2 to 3.5 times the fasting values. Maximum rates of oxygen consumption after feeding were several-fold higher in the warm-than in the cold-water species. After controlling for the effects of body mass and energy intake by analysis of covariance, the duration of the increase in metabolic rate, referred to as specific dynamic action (SDA), was found to be 3 to 4 times shorter in the warm- than in the cold-water fish, ranging from 57 h in C. bleekeri to 208 h in N. neglecta. In contrast, the SDA was not significantly different in the various species, corresponding to 15 to 23% of the energy ingested. Seasonal influences on metabolism and feeding were also studied in N. neglecta acclimated to simulated winter (-1.0 to-0.5 °C; 3 h light:21 h dark) or summer (0 to 0.9 °C; 21 h light:3 h dark) conditions. The metabolic rates of fasting and fed individuals, and the characteristics of the SDA were found to be independent of acclimation conditions. This suggests that N. neglecta is capable of processing food at similar rates throughout the year. Energy stores and enzyme activities were measured in the swimming muscles and liver of fish fed ad libitum. Summer-acclimated fish had higher concentrations of liver triglyceride stores and elevated activities of some enzymes of intermediary metabolism relative to winter-acclimated fish. The observed changes in intermdiary metabolism are probably related to annual cycles of growth and reproduction. It is suggested that the low aerobic scope for physiological performance in Antarctic fish may necessitate the seasonal switching of energy allocation between growth and reproduction.  相似文献   

17.
The philopatric larval dispesal and small effective population sizes characteristic of many clonal species should promote the development of significant small-scale genetic structure within populations as a result of isolation-by-distance. We used spatial autocorrelation statistics to detect genetic structure, arising from both clonal reproduction and philopatric dispersal of sexual propagules, for five allozyme loci within populations of the soft coral Alcyonium sp. In a population on Tatoosh Island, Washington, USA, sampled in 1991/1992, we found significant positive spatial autocorrelation at all loci among individuals separated by <40 cm, reflecting the presence of significant smallscale genetic structure due to associations among clonemates. For 4 of 5 loci, however, we detected no significant spatial autocorrelation among the different clones within this population over distances of 1 to 40 m. Analysis of soft-coral populations from six additional, topographically diverse sites in the north-east Pacific also did not reveal significant spatial autocorrelation among clones at any loci. This general lack of spatial autocorrelation of genotypes among clones suggests that significant small-scale genetic structure has not arisen in populations of Alcyonium sp. as a consequence of isolation-by-distance.  相似文献   

18.
R. M. Ali 《Marine Biology》1970,6(4):291-302
The rate of filtering Phaeodactylum tricornutum and Isochrysis galbana was measured in Hiatella arctica (L.) by the indirect suspension depletion method monitored by optical density measurement. The filtration rate of H. arctica was found to be 1.412×10–2 l/h/g wet weight at a temperature of 15°C when fed with P. tricornutum, at average cell concentrations up to 3.5×106 cells/ml. The filtration rate dropped almost to zero when the concentration of P. tricornutum reached 11×106 cells/ml. The filtration rate of I. galbana diminished at a much lower cell concentration of 1×106 cells/ml, and almost ceased at 3 to 4×106 cells/ml. In mixed cultures of I. galbana and P. tricornutum, the filtration rate ratio was 0.37 to 1.00, and this was believed to be due to a proportion of the smaller former cells passing through the ostia. However, when resuspended in sea water, I. galbana cells were taken at a rate slightly less than P. tricornutum. The medium in which the I. galbana cells had been grown was inhibitory to the filtering activity of H. arctica, since, when cells of either alga were resuspended in the medium, the filtration rate was considerably reduced. No inhibitory factor existed in either of the original nutrient media. Hence, the importance of using low cell concentrations and of eliminating any inhibitory metabolic products when measuring filtration rates of bivalves is stressed. H. arctica shows a typical activity temperature eurve for a boreo-arctic species, with a steady rise from 0°C to a maximum between 15° and 17°C, and a sharp fall in activity to about zero at 25°C. The rates of filtration of various species at temperatures approaching the optimum were compared after allowance was made for fall in filtration rate with increasing body weight. The results suggested that the Mytilacea had the highest filtration rates and that H. arctica possesses one of the lowest filtration rates recorded.  相似文献   

19.
Schöne  H. K. 《Marine Biology》1972,17(4):284-290
Nearly 500 crabs, Scylla serrata (Forskal) (family Portunidae), ranging in wet weight from 0.2 to 14.0 g, were acclimated to 27° and 35°C and their respiratory metabolism under water and on exposure to air at test temperatures ranging from 16° to 38°C was studied. In aquatic respiration, the response to temperature of crabs acclimated to a temperature of 16°C is statistically significant, and directly related to their weight. Smaller crabs did not survive at the warm acclimation level of 35°C. The metabolic rates of cold-adapted S. serrata are higher than those of warm-adapted ones. The effect of acclimation to aerial respiration on crabs acclimated to cold temperature varied slightly between large and small crabs. The aerial respiration rate was less than a tenth of the aquatic rate for all sizes. The response of S. serrata to warm acclimation in air has been found to be almost opposite to its response in water.This paper formed part of a thesis approved for the award of the degree of Doctor of Philosophy by the Madras University, India.  相似文献   

20.
Rates of development, growth and yolk conversion efficiency were determined in larvae of the summer flounder Paralichtys dentatus at constant temperatures of 21°, 16°, 12° and 5°C and in temperature cycles of 21°–16°, 16°–11°, and 11°–5°C. In constant incubation temperatures, development rate increased with increasing temperature. Larvae reared in the cyclic temperature regimes exhibited development rates intermediate to those at the temperature extremes of the cycle. All larvae reared at 5°C and in the 11°–5°C cycle regime died prior to total yolk-sac absorption. Although development rates were temperature dependent, no significant differences in notochord length ash-free dry weight or yolk utilization efficiency were found at the time of total yolk-sac absorption. The similarity in growth and yolk utilization efficiency for larvae reared under these various temperature regimes suggests that the physiological mechanisms involved are able to compensate for temperature changes encountered in nature.Contribution No. 195 from EPA, Environmental Research Laboratory, Narragansett, Rhode Island 02882, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号